Molecular simulation studies of hydrocarbon and carbon dioxide adsorption on coal
详细信息    查看全文
  • 作者:Junfang Zhang ; Keyu Liu ; M. B. Clennell ; D. N. Dewhurst ; Zhejun Pan…
  • 关键词:Molecular simulation ; GROMOS force field ; Coal bed methane ; Sorption isotherm ; Bituminous coal ; Hydrocarbons ; Carbon dioxide
  • 刊名:Petroleum Science
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:12
  • 期:4
  • 页码:692-704
  • 全文大小:1,293 KB
  • 参考文献:Anderson JS. Structure of silicic acid gels. Z Physik Chem. 1914;88:191-28.
    Azmi AS, Yusup S, Muhamad S. The influence of temperature on adsorption capacity of Malaysian coal. Chem Eng Process. 2006;45(5):392-.CrossRef
    Bae JS, Bhatia SK. High-pressure adsorption of methane and carbon dioxide on coal. Energy Fuels. 2006;20(6):2599-07.CrossRef
    Berendsen HJC, Postma JPM, Vangunsteren WF, et al. Molecular-dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684-0.CrossRef
    Berendsen HJC, Vanderspoel D, Vandrunen R. Gromacs: a message-passing parallel molecular-dynamics implementation. Comput Phys Commun. 1995;91(1-):43-6.CrossRef
    Billemont P, Coasne B, De Weireld G. An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water. Langmuir. 2011;27(3):1015-4.CrossRef
    Billemont P, Coasne B, De Weireld G. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder. Langmuir. 2013;29(10):3328-8.CrossRef
    Brochard L, Vandamme M, Pelenq RJM, et al. Adsorption-induced deformation of microporous materials: coal swelling induced by CO2–CH4 competitive adsorption. Langmuir. 2012a;28(5):2659-0.CrossRef
    Brochard L, Vandamme M, Pellenq RJM. Poromechanics of microporous media. J Mech Phys Solids. 2012b;60(4):606-2.CrossRef
    Busch A, Gensterblum Y. CBM and CO2-ECBM related sorption processes in coal: a review. Int J Coal Geol. 2011;87(2):49-1.CrossRef
    Busch A, Gensterblum Y, Krooss BM. Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixtures. Int J Coal Geol. 2003;55(2-):205-4.CrossRef
    Busch A, Gensterblum Y, Krooss BM, et al. Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modeling. Int J Coal Geol. 2004;60(2-):151-8.CrossRef
    Connell LD, Lu M, Pan ZJ. An analytical coal permeability model for tri-axial strain and stress conditions. Int J Coal Geol. 2010;84(2):103-4.CrossRef
    Day S, Fry R, Sakurovs R. Swelling of Australian coals in supercritical CO2. Int J Coal Geol. 2008;74(1):41-2.CrossRef
    Dubbeldam D, Calero S, Ellis D, et al. RASPA 1.0: Molecular Software Package for adsorption and diffusion in nanoporous materials. Evanston: Northwestern University; 2008.
    Dubbeldam D, Calero S, Vlugt TJH, et al. Force field parametrization through fitting on inflection points in isotherms. Phys Rev Lett. 2004a;93(8):088302.CrossRef
    Dubbeldam D, Calero S, Vlugt TJH, et al. United atom force field for alkanes in nanoporous materials. J Phys Chem B. 2004b;108(33):12301-3.CrossRef
    Fitzgerald JE, Pan Z, Sudibandriyo M, et al. Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal. Fuel. 2005;84(18):2351-3.CrossRef
    Frenkel D, Mooij GCAM, Smit B. Novel scheme to study structural and thermal-properties of continuously deformable molecules. J Phys Condens Matter. 1992;4(12):3053-6.CrossRef
    Gensterblum Y, Busch A, Krooss BM. Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel. 2014;115:581-.CrossRef
    Goodman AL, Busch A, Bustin RM, et al. Inter-laboratory comparison II: CO2 Isotherms measured on moisture-equilibrated Argonne premium coals at 55 °C and up to 15 MPa. Int J Coal Geol. 2007;72(3-):153-4.CrossRef
    Jiang SY, Zollweg JA, Gubbins KE. High-pressure adsorption of methane and ethane in activated carbon and carbon-fibers. J Phys Chem-Us. 1994;98(22):5709-3.CrossRef
    Krooss BM, van Bergen F, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int J Coal Geol. 2002;51(2):69-2.CrossRef
    Li DY, Liu Q, Weniger P, et al. High-pressure sorption isotherms and sorption kinetics of CH4 and CO2 on coals. Fuel. 2010;89(3):569-0.CrossRef
    Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7(8):306-7.
    Lu M, Connell LD. A model for the flow of gas mixtures in adsorption dominated dual porosity reservoirs incorporating multi-component matrix diffusion - Part I.Theoretical development. J Petrol Sci Eng. 2007;59(1-):17-6.CrossRef
    Lu M, Connell LD, Pan ZJ. A model for the flow of gas mixtures in adsorption dominated dual-porosity reservoirs incorporating multi-component matrix diffusion-Part II numerical algorithm and application examples. J Petrol Sci Eng. 2008;62(3-):93-01.CrossRef
    Mathews JP, van Duin ACT, Chaffee AL. The utility of coal molecular models. Fuel Process Technol. 2011;92(4):718-8.CrossRef
    Menon PG. Adsorption at high pressures. Chem Rev. 1968;68(3):277-4.CrossRef
    Oostenbrink C, Villa A, Mark AE, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field pa
  • 作者单位:Junfang Zhang (1)
    Keyu Liu (1) (2)
    M. B. Clennell (1)
    D. N. Dewhurst (1)
    Zhejun Pan (3)
    M. Pervukhina (1)
    Tongcheng Han (1)

    1. CSIRO Energy Flagship, 26 Dick Perry Ave, Kensington, WA, 6151, Australia
    2. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, 100083, China
    3. CSIRO Energy Flagship Ian Wark Laboratory, Bayview Avenue, Clayton, VIC, 3169, Australia
  • 刊物主题:Mineral Resources; Industrial Chemistry/Chemical Engineering; Industrial and Production Engineering; Energy Economics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1995-8226
文摘
Sorption isotherms of hydrocarbon and carbon dioxide (CO2) provide crucial information for designing processes to sequester CO2 and recover natural gas from unmineable coal beds. Methane (CH4), ethane (C2H6), and CO2 adsorption isotherms on dry coal and the temperature effect on their maximum sorption capacity have been studied by performing combined Monte Carlo (MC) and molecular dynamics (MD) simulations at temperatures of 308 and 370 K (35 and 97 °C) and at pressures up to 10 MPa. Simulation results demonstrate that absolute sorption (expressed as a mass basis) divided by bulk gas density has negligible temperature effect on CH4, C2H6, and CO2 sorption on dry coal when pressure is over 6 MPa. CO2 is more closely packed due to stronger interaction with coal and the stronger interaction between CO2 molecules compared, respectively, with the interactions between hydrocarbons and coal and between hydrocarbons. The results of this work suggest that the “a-constant (proportional to T c 2 /P c ) in the Peng–Robinson equation of state is an important factor affecting the sorption behavior of hydrocarbons. CO2 injection pressures of lower than 8 MPa may be desirable for CH4 recovery and CO2 sequestration. This study provides a quantitative understanding of the effects of temperature on coal sorption capacity for CH4, C2H6, and CO2 from a microscopic perspective. Keywords Molecular simulation GROMOS force field Coal bed methane Sorption isotherm Bituminous coal Hydrocarbons Carbon dioxide
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.