Exogenous ghrelin improves blood flow distribution in pulmonary hypertension—assessed using synchrotron radiation microangiography
详细信息    查看全文
  • 作者:Daryl O. Schwenke (1)
    Emily A. Gray (1)
    James T. Pearson (2) (3)
    Takashi Sonobe (4)
    Hatsue Ishibashi-Ueda (5)
    Isabel Campillo (1)
    Kenji Kangawa (6)
    Keiji Umetani (7)
    Mikiyasu Shirai (4)
  • 关键词:Ghrelin ; Chronic hypoxia ; Pulmonary hypertension ; Endothelin ; 1 ; Rat
  • 刊名:Pfl眉gers Archiv - European Journal of Physiology
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:462
  • 期:3
  • 页码:397-406
  • 全文大小:499KB
  • 参考文献:1. Adnot S, Raffestin B, Eddahibi S, Braquet P, Chabrie PE (1991) Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest 87:155-62 CrossRef
    2. Baber SR, Deng W, Master RG, Bunnell BA, Taylor BK, Murthy SN, Hyman AL, Kadowitz PJ (2007) Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol 292:H1120–H1128 CrossRef
    3. Bakker EN, van der Linden PJ, Sipkema P (1997) Endothelin-1-induced constriction inhibits nitric-oxide-mediated dilation in isolated rat resistance arteries. J Vasc Res 34:418-24 CrossRef
    4. Blumberg FC, Lorenz C, Wolf K, Sandner P, Riegger GA, Pfeifer M (2002) Increased pulmonary prostacyclin synthesis in rats with chronic hypoxic pulmonary hypertension. Cardiovas Res 55:171-77 CrossRef
    5. Budhiraja R, Tuder RM, Hassoun PM (2004) Endothelial dysfunction in pulmonary hypertension. Circulation 109:159-65 CrossRef
    6. Carville C, Raffestin B, Eddahibi S, Blouquit Y, Adnot S (1993) Loss of endothelium-dependent relaxation in proximal pulmonary arteries from rats exposed to chronic hypoxia: effects of in vivo and in vitro supplementation with l -arginine. J Cardiovasc Pharmacol 22:889-96 CrossRef
    7. Fike CD, Kaplowitz MR, Thomas CJ, Nelin LD (1998) Chronic hypoxia decreases nitric oxide production and endothelial nitric oxide synthase in newborn pig lungs. Am J Physiol (Lung Cell Mol Physiol) 274:L517–L526
    8. Giaid A (1998) Nitric oxide and endothelin-1 in pulmonary hypertension. Chest 114:208S-12S CrossRef
    9. Henriques-Coelho T, Roncon-Albuquerque R Jr, Lourenco AP, Baptista MJ, Oliveira SM, Brandao-Nogueira A, Correia-Pinto J, Leite-Moreira AF (2006) Ghrelin reverses molecular, structural and hemodynamic alterations of the right ventricle in pulmonary hypertension. Portuguese J Cardiol 25:55-3
    10. Huang J, Wolk JH, Gewitz MH, Mathew R (2010) Progressive endothelial cell damage in an inflammatory model of pulmonary hypertension. Exp Lung Res 36:57-6 CrossRef
    11. Imamura M, Luo B, Limbird J, Vitello A, Oka M, Ivy DD, McMurtry IF, Garat CV, Fallon MB, Carter EP (2005) Hypoxic pulmonary hypertension is prevented in rats with common bile duct ligation. J Appl Physiol 98:739-47 CrossRef
    12. Johnson W, Nohria A, Garrett L, Fang JC, Igo J, Katai M, Ganz P, Creager MA (2002) Contribution of endothelin to pulmonary vascular tone under normoxic and hypoxic conditions. Am J Physiol (Heart Circ Physiol) 283:H568–H575
    13. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656-60 CrossRef
    14. Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495-22 CrossRef
    15. Le Cras TD, McMurtry IF (2001) Nitric oxide production in the hypoxic lung. Am J Physiol (Lung Cell Mol Physiol) 280:L575–L582
    16. Mam V, Tanbe AF, Vitali SH, Arons E, Christou HA, Khalil RA (2010) Impaired vasoconstriction and nitric oxide-mediated relaxation in pulmonary arteries of hypoxia- and monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Exp Ther 332:455-62 CrossRef
    17. Rossi GP, Seccia TM, Nussdorfer GG (2001) Reciprocal regulation of endothelin-1 and nitric oxide: relevance in the physiology and pathology of the cardiovascular system. Int Rev Cytol 209:241-72 CrossRef
    18. Sakao S, Tatsumi K, Voelkel NF (2009) Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 10:95 CrossRef
    19. Schwenke DO, Pearson JT, Kangawa K, Umetani K, Shirai M (2007) Imaging of the pulmonary circulation in the closed-chest rat using synchrotron radiation microangiography. J Appl Physiol 102:787-93 CrossRef
    20. Schwenke DO, Pearson JT, Kangawa K, Umetani K, Shirai M (2008) Changes in macrovessel pulmonary blood flow distribution following chronic hypoxia: assessed using synchrotron radiation microangiography. J Appl Physiol 104:88-6 CrossRef
    21. Schwenke DO, Pearson JT, Shimochi A, Kangawa K, Tsuchimochi H, Umetani K, Shirai M, Cragg PA (2009) Changes in pulmonary blood flow distribution in monocrotaline compared with chronic hypoxia-induced models of pulmonary hypertension—assessed using synchrotron radiation microangiography. J Hyperten 27:1410-419 CrossRef
    22. Schwenke DO, Pearson JT, Sonobe T, Ishibashi-Ueda H, Shimouchi A, Kangawa K, Umetani K, Shirai M (2011) Role of rho kinase signaling and endothelial dysfunction in modulating blood flow distribution in pulmonary hypertension. J Appl Physiol 110(4):901-08 CrossRef
    23. Schwenke DO, Tokudome T, Shirai M, Hosoda H, Horio T, Kishimoto I, Kangawa K (2008) Exogenous ghrelin attenuates the progression of chronic hypoxia-induced pulmonary hypertension in conscious rats. Endocrinology 149:237-44 CrossRef
    24. Shimoda LA, Sham JS, Sylvester JT (2000) Altered pulmonary vasoreactivity in the chronically hypoxic lung. Physiol Res 49:549-60
    25. Tesauro M, Schinzari F, Caramanti M, Lauro R, Cardillo C (2010) Cardiovascular and metabolic effects of ghrelin. Curr Diabetes Rev 6:228-35 CrossRef
    26. Tesauro M, Schinzari F, Iantorno M, Rizza S, Melina D, Lauro D, Cardillo C (2005) Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation 112:2986-992
    27. Tesauro M, Schinzari F, Rovella V, Di Daniele N, Lauro D, Mores N, Veneziani A, Cardillo C (2009) Ghrelin restores the endothelin 1/nitric oxide balance in patients with obesity-related metabolic syndrome. Hypertension 54:995-000 CrossRef
    28. Wiley KE, Davenport AP (2002) Comparison of vasodilators in human internal mammary artery: ghrelin is a potent physiological antagonist of endothelin-1. Br J Pharmacol 136:1146-152 CrossRef
    29. Wu R, Dong W, Zhou M, Cui X, Hank Simms H, Wang P (2005) Ghrelin improves tissue perfusion in severe sepsis via downregulation of endothelin-1. Cardiovas Res 68:318-26 CrossRef
    30. Yang X, Chen W, Li F (2000) The change and distribution of endothelin-1 in lung of hypoxic pulmonary hypertension rat. Hua Xi Yi Ke Da Xue Xue Bao 31:30-3
    31. Yuan JX, Rubin LJ (2005) Pathogenesis of pulmonary arterial hypertension: the need for multiple hits. Circulation 111:534-38 CrossRef
  • 作者单位:Daryl O. Schwenke (1)
    Emily A. Gray (1)
    James T. Pearson (2) (3)
    Takashi Sonobe (4)
    Hatsue Ishibashi-Ueda (5)
    Isabel Campillo (1)
    Kenji Kangawa (6)
    Keiji Umetani (7)
    Mikiyasu Shirai (4)

    1. Department of Physiology, University of Otago, PO Box 56, Dunedin, New Zealand
    2. Department of Physiology, Monash University, Melbourne, Australia
    3. Australian Synchrotron, Melbourne, Australia
    4. Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
    5. Department of Pathology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
    6. National Cardiovascular Center Research Institute, Suita, Osaka, Japan
    7. Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
  • ISSN:1432-2013
文摘
Ghrelin has cardioprotective properties and, recently, has been shown to improve endothelial function and reduce endothelin-1 (ET-1)-mediated vasoconstriction in peripheral vascular disease. Recently, we reported that ghrelin attenuates pulmonary hypertension (PH) caused by chronic hypoxia (CH), which we hypothesized in this study may be via suppression of the ET-1 pathway. We also aimed to determine whether ghrelin’s ability to prevent alterations of the ET-1 pathway also prevented adverse changes in pulmonary blood flow distribution associated with PH. Sprague–Dawley rats were exposed to CH (10% O2 for 2?weeks) with daily subcutaneous injections of ghrelin (150?μg/kg) or saline. Utilizing synchrotron radiation microangiography, we assessed pulmonary vessel branching structure, which is indicative of blood flow distribution, and dynamic changes in vascular responsiveness to (1) ET-1 (1?nmol/kg), (2) the ET-1A receptor antagonist, BQ-123 (1?mg/kg), and (3) ACh (3.0?μg?kg??min?). CH impaired blood flow distribution throughout the lung. However, this vessel “rarefaction-was attenuated in ghrelin-treated CH-rats. Moreover, ghrelin (1) reduced the magnitude of endothelial dysfunction, (2) prevented an increase in ET-1-mediated vasoconstriction, and (3) reduced pulmonary vascular remodeling and right ventricular hypertrophy—all adverse consequences associated with CH. These results highlight the beneficial effects of ghrelin for maintaining optimal lung perfusion in the face of a hypoxic insult. Further research is now required to establish whether ghrelin is also an effective therapy for restoring normal pulmonary hemodynamics in patients that already have established PH.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.