Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells
详细信息    查看全文
  • 作者:Michela Carlet (1) (7)
    Kristina Janjetovic (1) (7)
    Johannes Rainer (1) (2) (7)
    Stefan Schmidt (2) (3) (7)
    Renate Panzer-Grümayer (4) (7)
    Georg Mann (4) (7)
    Martina Prelog (5) (7)
    Bernhard Meister (6) (7)
    Christian Ploner (1) (7)
    Reinhard Kofler (1) (2) (7)
  • 刊名:BMC Cancer
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:10
  • 期:1
  • 全文大小:808KB
  • 参考文献:1. Schmidt S, Rainer J, Ploner C, Presul E, Riml S, Kofler R: Glucocorticoid-induced apoptosis and glucocorticoid resistance: Molecular mechanisms and clinical relevance. / Cell Death Differ 2004,11(Suppl 1):S45-S55. CrossRef
    2. Distelhorst CW: Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. / Cell Death Differ 2002, 9:6-9. CrossRef
    3. Gross KL, Lu NZ, Cidlowski JA: Molecular mechanisms regulating glucocorticoid sensitivity and resistance. / Mol Cell Endocrinol 2009, 300:7-6. CrossRef
    4. Tissing WJ, Meijerink JP, den Boer ML, Pieters R: Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. / Leukemia 2003, 17:17-5. CrossRef
    5. Schmidt S, Rainer J, Riml S, Ploner C, Jesacher S, Achmüller C, Presul E, Skvortsov S, Crazzolara R, Fiegl M, Raivio T, J?nne OA, Geley S, Meister B, Kofler R: Identification of glucocorticoid response genes in children with acute lymphoblastic leukemia. / Blood 2006, 107:2061-069. CrossRef
    6. Heine-Suner D, Diaz-Guillen MA, Lange AJ, Rodriguez dC: Sequence and structure of the human 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase heart isoform gene (PFKFB2). / Eur J Biochem 1998, 254:103-10. CrossRef
    7. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. / Biochem J 2004, 381:561-79. CrossRef
    8. Colosia AD, Lively M, El-Maghrabi MR, Pilkis SJ: Isolation of a cDNA clone for rat liver 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase. / Biochem Biophys Res Commun 1987, 143:1092-098. CrossRef
    9. Okar DA, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange AJ: PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. / Trends Biochem Sci 2001, 26:30-5. CrossRef
    10. Kitamura K, Kangawa K, Matsuo H, Uyeda K: Phosphorylation of myocardial fructose-6-phosphate,2-kinase: fructose-2,6-bisphosphatase by cAMP-dependent protein kinase and protein kinase C. Activation by phosphorylation and amino acid sequences of the phosphorylation sites. / J Biol Chem 1988, 263:16796-6801.
    11. Bertrand L, Alessi DR, Deprez J, Deak M, Viaene E, Rider MH, Hue L: Heart 6-phosphofructo-2-kinase activation by insulin results from Ser-466 and Ser-483 phosphorylation and requires 3-phosphoinositide-dependent kinase-1, but not protein kinase B. / J Biol Chem 1999, 274:30927-0933. CrossRef
    12. Plas DR, Rathmell JC, Thompson CB: Homeostatic control of lymphocyte survival: potential origins and implications. / Nat Immunol 2002, 3:515-21. CrossRef
    13. Tennant DA, Duran RV, Gottlieb E: Targeting metabolic transformation for cancer therapy. / Nat Rev Cancer 2010, 10:267-77. CrossRef
    14. Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB: In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. / Mol Cell 2000, 6:683-92. CrossRef
    15. Hammerman PS, Fox CJ, Thompson CB: Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. / Trends Biochem Sci 2004, 29:586-92. CrossRef
    16. Warburg O: Ist die aerobe Glykolyse spezifisch für die Tumoren? / Biochem Z 1929, 204:482-87.
    17. Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. / Science 2009, 324:1029-033. CrossRef
    18. Strasser-Wozak EMC, Hattmannstorfer R, Hála M, Hartmann BL, Fiegl M, Geley S, Kofler R: Splice site mutation in the glucocorticoid receptor gene causes resistance to glucocorticoid-induced apoptosis in a human acute leukemic cell line. / Cancer Res 1995, 55:348-53.
    19. Schmidt S, Irving JA, Minto L, Matheson E, Nicholson L, Ploner A, Parson W, Kofler A, Amort M, Erdel M, Hall A, Kofler R: Glucocorticoid resistance in two key models of acute lymphoblastic leukemia occurs at the level of the glucocorticoid receptor. / FASEB J 2006, 20:2600-602. CrossRef
    20. L?ffler M, Tonko M, Hartmann BL, Bernhard D, Geley S, Helmberg A, Kofler R: c-myc does not prevent glucocorticoid-induced apoptosis of human leukemic lymphoblasts. / Oncogene 1999, 18:4626-631. CrossRef
    21. Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H: Transcriptional activation by tetracyclines in mammalian cells. / Science 1995, 268:1766-769. CrossRef
    22. Helmberg A, Auphan N, Caelles C, Karin M: Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocorticoid receptor. / EMBO J 1995, 14:452-60.
    23. Fears S, Chakrabarti SR, Nucifora G, Rowley JD: Differential expression of TCL1 during pre-B-cell acute lymphoblastic leukemia progression. / Cancer Genet Cytogenet 2002, 135:110-19. CrossRef
    24. Parson W, Kirchebner R, Mühlmann R, Renner K, Kofler A, Schmidt S, Kofler R: Cancer cell line identification by short tandem repeat profiling: power and limitations. / FASEB J 2005, 19:434-36.
    25. Wu Z, Irizarry RA, Gentleman RC, Martinez Murillo F, Spencer F: A model based background adjustment for oligonucleotide expression arrays. [http://www.bepress.com/jhubiostat/paper1/] / Internet 2004.
    26. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. / Genome Biol 2004, 5:R80. CrossRef
    27. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C: A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. / J Immunol Methods 1991, 139:271-79. CrossRef
    28. Geley S, Hartmann BL, Hattmannstorfer R, L?ffler M, Ausserlechner MJ, Bernhard D, Sgonc R, Strasser-Wozak EMC, Ebner M, Auer B, Kofler R: P53-induced apoptosis in the human T-ALL cell line CCRF-CEM. / Oncogene 1997, 15:2429-437. CrossRef
    29. Gruber G, Carlet M, Turtscher E, Meister B, Irving JA, Ploner C, Kofler R: Levels of glucocorticoid receptor and its ligand determine sensitivity and kinetics of glucocorticoid-induced leukemia apoptosis. / Leukemia 2009, 23:820-23. CrossRef
    30. Ploner C, Rainer J, Niederegger H, Eduardoff M, Villunger A, Geley S, Kofler R: The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. / Leukemia 2008, 22:370-77. CrossRef
    31. Mansha M, Carlet M, Ploner C, Gruber G, Wasim M, Wiegers GJ, Rainer J, Geley S, Kofler R: Functional analyses of Src-like adaptor (SLA), a glucocorticoid-regulated gene in acute lymphoblastic leukemia. / Leuk Res 2010, 34:529-34. CrossRef
    32. Hulleman E, Kazemier KM, Holleman A, Vanderweele DJ, Rudin CM, Broekhuis MJ, Evans WE, Pieters R, den Boer ML: Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. / Blood 2009, 113:2014-021. CrossRef
    33. Eberhart K, Renner K, Ritter I, Kastenberger M, Singer K, Hellerbrand C, Kreutz M, Kofler R, Oefner PJ: Low doses of 2-deoxy-glucose sensitize acute lymphoblastic leukemia cells to glucocorticoid-induced apoptosis. / Leukemia 2009, 23:2167-170. CrossRef
    34. Nieto MA, González A, Gambón F, Díaz-Espada F, López-Rivas A: Apoptosis in human thymocytes after treatment with glucocorticoids. / Clin Exp Immunol 1992, 88:341-44. CrossRef
    35. Brunetti M, Martelli N, Colasante A, Piantelli M, Musiani P, Aiello FB: Spontaneous and glucocorticoid-induced apoptosis in human mature T lymphocytes. / Blood 1995, 86:4199-205.
    36. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/10/638/prepub
  • 作者单位:Michela Carlet (1) (7)
    Kristina Janjetovic (1) (7)
    Johannes Rainer (1) (2) (7)
    Stefan Schmidt (2) (3) (7)
    Renate Panzer-Grümayer (4) (7)
    Georg Mann (4) (7)
    Martina Prelog (5) (7)
    Bernhard Meister (6) (7)
    Christian Ploner (1) (7)
    Reinhard Kofler (1) (2) (7)

    1. Division Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    7. Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
    2. Tyrolean Cancer Research Institute, 6020, Innsbruck, Austria
    3. Department of Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
    4. Children's Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
    5. Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
    6. Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
  • ISSN:1471-2407
文摘
Background Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and constitute a central component in the therapy of lymphoid malignancies, most notably childhood acute lymphoblastic leukemia (ALL). PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2), a kinase controlling glucose metabolism, was identified by us previously as a GC response gene in expression profiling analyses performed in children with ALL during initial systemic GC mono-therapy. Since deregulation of glucose metabolism has been implicated in apoptosis induction, this gene and its relatives, PFKFB1, 3, and 4, were further analyzed. Methods Gene expression analyses of isolated lymphoblasts were performed on Affymetrix HGU133 Plus 2.0 microarrays. GCRMA normalized microarray data were analyzed using R-Bioconductor packages version 2.5. Functional gene analyses of PFKFB2-15A and -15B isoforms were performed by conditional gene over-expression experiments in the GC-sensitive T-ALL model CCRF-CEM. Results Expression analyses in additional ALL children, non-leukemic individuals and leukemic cell lines confirmed frequent PFKFB2 induction by GC in most systems sensitive to GC-induced apoptosis, particularly T-ALL cells. The 3 other family members, in contrast, were either absent or only weakly expressed (PFKFB1 and 4) or not induced by GC (PFKFB3). Conditional PFKFB2 over-expression in the CCRF-CEM T-ALL in vitro model revealed that its 2 splice variants (PFKFB2-15A and PFKFB2-15B) had no detectable effect on cell survival. Moreover, neither PFKFB2 splice variant significantly affected sensitivity to, or kinetics of, GC-induced apoptosis. Conclusions Our data suggest that, at least in the model system investigated, PFKFB2 is not an essential upstream regulator of the anti-leukemic effects of GC.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.