Empirical assessment of machine learning-based malware detectors for Android
详细信息    查看全文
  • 作者:Kevin Allix ; Tegawendé F. Bissyandé ; Quentin Jérome…
  • 关键词:Machine learning ; Ten ; Fold ; Malware ; Android
  • 刊名:Empirical Software Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:183-211
  • 全文大小:1,667 KB
  • 参考文献:Allix K, Bissyandé TF, Jérome Q, Klein J, State R, Le Traon Y (2014a) Large-scale machine learning-based malware detection: confronting the “10-fold cross validation” scheme with reality. In: Proceedings of the 4th ACM conference on data and application security and privacy. ACM, New York, CODASPY ’14, pp 163–166. doi:10.​1145/​2557547.​2557587
    Allix K, Jérome Q, Bissyandé TF, Klein J, State R, Le Traon Y (2014b) A forensic analysis of android malware: how is malware written and how it could be detected? In: Computer software and applications conference (COMPSAC)
    Amos B, Turner H, White J (2013) Applying machine learning classifiers to dynamic android malware detection at scale. In: 2013 9th international wireless communications and mobile computing conference (IWCMC), pp 1666–1671. doi:10.​1109/​IWCMC.​2013.​6583806
    AndroGuard (2013) Apktool for reverse engineering android applications. https://​code.​google.​com/​p/​androguard/​ . Accessed 09 Sep 2013
    AppBrain (2013a) Comparison of free and paid android apps. http://​www.​appbrain.​com/​stats/​free-and-paid-android-applications . Accessed 09 Sep 2013
    AppBrain (2013b) Number of available android applications. http://​www.​appbrain.​com/​stats/​number-of-android-apps . Accessed 09 Sep 2013
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRef MATH
    Canfora G, Mercaldo F, Visaggio CA (2013) A classifier of malicious android applications. In: 2013 eight international conference on availability, reliability and security (ARES)
    Cesare S, Xiang Y (2010) Classification of malware using structured control flow. In: Proceedings of the eighth Australasian symposium on parallel and distributed computing, vol 107. Australian Computer Society, Inc., Darlinghurst, Australia, AusPDC ’10, pp 61–70
    Cohen WW (1995) Fast effective rule induction. In: Machine learning-international workshop then conference. Morgan Kaufmann Publishers, Inc., pp 115–123
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. doi:10.​1007/​BF00994018 MATH
    Demme J, Maycock M, Schmitz J, Tang A, Waksman A, Sethumadhavan S, Stolfo S (2013) On the feasibility of online malware detection with performance counters. In: Proceedings of the 40th annual international symposium on computer architecture. ACM, New York, ISCA ’13, pp 559–570. doi:10.​1145/​2485922.​2485970
    Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android application security. In: Proceedings of the 20th USENIX conference on security. USENIX Association, Berkeley, SEC’11, pp 21–21. http://​dl.​acm.​org/​citation.​cfm?​id=​2028067.​2028088
    Felt AP, Finifter M, Chin E, Hanna S, Wagner D (2011) A survey of mobile malware in the wild. In: Proceedings of the 1st ACM workshop on security and privacy in smartphones and mobile devices. ACM, New York, SPSM ’11, pp 3–14. doi:10.​1145/​2046614.​2046618
    Google (2012) Android and security (bouncer announcement). http://​googlemobile.​blogspot.​fr/​2012/​02/​android-and-security.​html . Accessed 14 June 2014
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. SIGKDD Explor Newsl 11(1):10–18. doi:10.​1145/​1656274.​1656278 CrossRef
    He H, Garcia E (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284. doi:10.​1109/​TKDE.​2008.​239 CrossRef
    Henchiri O, Japkowicz N (2006) A feature selection and evaluation scheme for computer virus detection. In: Proceedings of the sixth international conference on data mining. IEEE Computer Society, Washington, DC, ICDM ’06, pp 891–895. doi:10.​1109/​ICDM.​2006.​4
    Jacob A, Gokhale M (2007) Language classification using n-grams accelerated by fpga-based bloom filters. In: Proceedings of the 1st international workshop on high-performance reconfigurable computing technology and applications: held in conjunction with SC07. Reno, Nevada, HPRCTA ’07, pp 31–37
    Kephart JO (1994) A biologically inspired immune system for computers. In: Artificial life IV: proceedings of the fourth international workshop on the synthesis and simulation of living systems. MIT Press, pp 130–139
    Kolter JZ, Maloof MA (2006) Learning to detect and classify malicious executables in the wild. J Mach Learn Res 7:2721–2744. http://​dl.​acm.​org/​citation.​cfm?​id=​1248547.​1248646 MathSciNet MATH
    McLachlan G, Do KA, Ambroise C (2005) Analyzing microarray gene expression data, vol 422. Wiley.com
    Perdisci R, Lanzi A, Lee W (2008a) Classification of packed executables for accurate computer virus detection. Pattern Recogn Lett 29(14):1941–1946. http://​www.​sciencedirect.​com/​science/​article/​pii/​S016786550800211​0 CrossRef
    Perdisci R, Lanzi A, Lee W (2008b) Mcboost: boosting scalability in malware collection and analysis using statistical classification of executables. In: Computer security applications conference, 2008. ACSAC 2008. Annual, pp 301–310. doi:10.​1109/​ACSAC.​2008.​22
    Pieterse H, Olivier M (2012) Android botnets on the rise: trends and characteristics. In: Information security for South Africa (ISSA), 2012, pp 1–5. doi:10.​1109/​ISSA.​2012.​6320432
    Pouik G (2012) Similarities for fun & profit. Phrack 14(68). http://​www.​phrack.​org/​issues.​html?​id=​15&​issue=​68
    Quinlan JR (1993) C4.5: programs for machine learning, vol 1. Morgan Kaufmann
    Rossow C, Dietrich C, Grier C, Kreibich C, Paxson V, Pohlmann N, Bos H, van Steen M (2012) Prudent practices for designing malware experiments: status quo and outlook. In: 2012 IEEE symposium on security and privacy (SP), pp 65–79. doi:10.​1109/​SP.​2012.​14
    Sahs J, Khan L (2012) A machine learning approach to android malware detection. In: 2012 European intelligence and security informatics conference (EISIC). IEEE, pp 141–147. doi:10.​1109/​EISIC.​2012.​34
    Santos I, Penya YK, Devesa J, Bringas PG (2009) N-grams-based file signatures for malware detection. In: ICEIS, pp 317–320
    Schultz M, Eskin E, Zadok E, Stolfo S (2001) Data mining methods for detection of new malicious executables. In: Proceedings 2001 IEEE symposium on security and privacy, 2001. S P 2001, pp 38–49. doi:10.​1109/​SECPRI.​2001.​924286
    Tahan G, Rokach L, Shahar Y (2012) Mal-id: automatic malware detection using common segment analysis and meta-features. J Mach Learn Res 98888:949–979MathSciNet
    Van Hulse J, Khoshgoftaar TM, Napolitano A (2007) Experimental perspectives on learning from imbalanced data. In: Proceedings of the 24th international conference on machine learning. ACM, New York, ICML ’07, pp 935–942. doi:10.​1145/​1273496.​1273614
    Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat: Android malware detection through manifest and api calls tracing. In: 2012 seventh Asia joint conference on information security (Asia JCIS), pp 62–69. doi:10.​1109/​AsiaJCIS.​2012.​18
    Yerima S, Sezer S, McWilliams G, Muttik I (2013) A new android malware detection approach using bayesian classification. In: 2013 IEEE 27th international conference on advanced information networking and applications (AINA), pp 121–128. doi:10.​1109/​AINA.​2013.​88
    Zhang B, Yin J, Hao J, Zhang D, Wang S (2007) Malicious codes detection based on ensemble learning. In: Proceedings of the 4th international conference on autonomic and trusted computing. Springer, Berlin, Heidelberg, ATC’07, pp 468–477
    Zhou Y, Jiang X (2012) Dissecting android malware: characterization and evolution. In: Proceedings of the 2012 IEEE symposium on security and privacy. IEEE Computer Society, Washington, DC, SP ’12, pp 95–109. doi:10.​1109/​SP.​2012.​16
  • 作者单位:Kevin Allix (1)
    Tegawendé F. Bissyandé (1)
    Quentin Jérome (1)
    Jacques Klein (1)
    Radu State (1)
    Yves Le Traon (1)

    1. Interdisciplinary Center for Security, Reliability and Trust, University of Luxembourg, 4 rue Alphonse Weicker, 2721, Luxembourg, Luxembourg
  • 刊物类别:Computer Science
  • 刊物主题:Software Engineering, Programming and Operating Systems
    Programming Languages, Compilers and Interpreters
  • 出版者:Springer Netherlands
  • ISSN:1573-7616
文摘
To address the issue of malware detection through large sets of applications, researchers have recently started to investigate the capabilities of machine-learning techniques for proposing effective approaches. So far, several promising results were recorded in the literature, many approaches being assessed with what we call in the lab validation scenarios. This paper revisits the purpose of malware detection to discuss whether such in the lab validation scenarios provide reliable indications on the performance of malware detectors in real-world settings, aka in the wild. To this end, we have devised several Machine Learning classifiers that rely on a set of features built from applications’ CFGs. We use a sizeable dataset of over 50 000 Android applications collected from sources where state-of-the art approaches have selected their data. We show that, in the lab, our approach outperforms existing machine learning-based approaches. However, this high performance does not translate in high performance in the wild. The performance gap we observed—F-measures dropping from over 0.9 in the lab to below 0.1 in the wild—raises one important question: How do state-of-the-art approaches perform in the wild? Keywords Machine learning Ten-Fold Malware Android
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.