Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum)
详细信息    查看全文
  • 作者:Jinyan Wang (1)
    Zhongze Hu (1)
    Tongmin Zhao (1)
    Yuwen Yang (1)
    Tianzi Chen (1)
    Mali Yang (1)
    Wengui Yu (1)
    Baolong Zhang (1)

    1. Provincial Key Laboratory of Agrobiology
    ; Jiangsu Academy of Agricultural Sciences ; Nanjing ; China
  • 关键词:Genome ; wide analysis ; bHLH transcription factor ; TYLCV ; VIGS ; Tomato
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,992 KB
  • 参考文献:1. Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989;56(5):777鈥?3. CrossRef
    2. Ledent V, Vervoort M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res. 2001;11(5):754鈥?0. CrossRef
    3. Toledo-Ortiz G, Huq E, Quail PH. The arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell Online. 2003;15(8):1749鈥?0. CrossRef
    4. Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol. 2004;5(6):226. CrossRef
    5. Atchley WR, Terhalle W, Dress A. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol. 1999;48(5):501鈥?6. CrossRef
    6. Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in arabidopsis siliques. Plant Cell Online. 2000;12(10):1863鈥?8. CrossRef
    7. Zheng X, Wang Y, Yao Q, Yang Z, Chen K. A genome-wide survey on basic helix-loop-helix transcription factors in rat and mouse. Mamm Genome. 2009;20(4):236鈥?6. CrossRef
    8. Robinson KA, Koepke JI, Kharodawala M, Lopes JM. A network of yeast basic helix鈥搇oop鈥揾elix interactions. Nucleic Acids Res. 2000;28(22):4460鈥?. CrossRef
    9. Atchley WR, Fitch WM. A natural classification of the basic helix鈥搇oop鈥揾elix class of transcription factors. Proc Natl Acad Sci. 1997;94(10):5172鈥?. CrossRef
    10. Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, et al. Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol. 2007;7(1):33. CrossRef
    11. Henriksson M, L眉scher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res. 1996;68:109鈥?2. CrossRef
    12. Goding CR. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 2000;14(14):1712鈥?8.
    13. Sun XH, Copeland NG, Jenkins NA, Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol. 1991;11(11):5603鈥?1.
    14. Fisher A, Caudy M. The function of hairy-related bHLH repressor proteins in cell fate decisions. Bioessays. 1998;20:298鈥?06. CrossRef
    15. Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A. Collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr Biol. 1996;6(6):707鈥?8. CrossRef
    16. Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell Online. 2003;15(11):2497鈥?02. CrossRef
    17. Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol. 2006;141(4):1167鈥?4. CrossRef
    18. Song X-M, Huang Z-N, Duan W-K, Ren J, Liu T-K, Li Y, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genomics. 2014;289(1):77鈥?1. CrossRef
    19. Pires N, Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol. 2010;27(4):862鈥?4. CrossRef
    20. Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 2011;66(1):94鈥?16. CrossRef
    21. Consortium TTG. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485(7400):635鈥?1. CrossRef
    22. Scholthof K-BG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, et al. Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol. 2011;12(9):938鈥?4. CrossRef
    23. Glick E, Levy Y, Gafni Y. The viral etiology of tomato yellow leaf curl disease-a review. Plant Protect Sci. 2009;45:81鈥?7.
    24. Hanssen IM, Lapidot M, Thomma BPHJ. Emerging viral diseases of tomato crops. Mol Plant Microbe Interact. 2010;23(5):539鈥?8. CrossRef
    25. Ji Y, Schuster D, Scott J. Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed. 2007;20(3):271鈥?4. CrossRef
    26. Ji Y, Scott JW, Schuster DJ, Maxwell DP. Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hortic Sci. 2009;134(2):281鈥?.
    27. Hanson P, Green SK, Kuo G. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep. 2006;56:17鈥?.
    28. Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, et al. Molecular dissection of tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet. 2009;119(3):519鈥?0. CrossRef
    29. Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, et al. The tomato yellow leaf curl virus resistance genes鈥?lt;鈥塱talic鈥?gt;鈥塗y-1</italic鈥?gt;鈥塧nd鈥?lt;鈥塱talic鈥?gt;鈥塗y-3</italic鈥?gt;鈥塧re allelic and code for DFDGD-class RNA鈥揹ependent RNA polymerases. PLoS Genet. 2013;9(3):e1003399. CrossRef
    30. Ji Y, Scott JW, Schuster DJ. Toward fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. HortScience. 2009;44(3):614鈥?.
    31. Hutton SF, Scott JW, Schuster DJ. Recessive resistance to tomato yellow leaf curl virus from the tomato cultivar tyking is located in the same region as Ty-5 on chromosome 4. HortScience. 2012;47(3):324鈥?.
    32. Yang X, Caro M, Hutton S, Scott J, Guo Y, Wang X, et al. Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Mol Breed. 2014;34(2):749鈥?0.
    33. Chen T, Lv Y, Zhao T, Li N, Yang Y, Yu W, et al. Comparative transcriptome profiling of a resistant vs. susceptible tomato (<italic鈥?gt;鈥塖olanum lycopersicum</italic>) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One. 2013;8(11):e80816. CrossRef
    34. Ling H-Q, Bauer P, Bereczky Z, Keller B, Ganal M. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci. 2002;99(21):13938鈥?3. CrossRef
    35. Chen K-Y, Cong B, Wing R, Vrebalov J, Tanksley SD. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science. 2007;318(5850):643鈥?. CrossRef
    36. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40(D1):D290鈥?01. CrossRef
    37. Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012;40(D1):D302鈥?. CrossRef
    38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725鈥?. CrossRef
    39. Felsenstein J. PHYLIP - phylogeny inference package (Version 3.2). Cladistics. 1989;5:164鈥?.
    40. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876鈥?2. CrossRef
    41. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res. 2009;37 suppl 2:W202鈥?. CrossRef
    42. Guo AY, Zhu QH, Chen X, Luo JC. GSDS: a gene structure display server. Yi Chuan. 2007;29(8):1023鈥?. CrossRef
    43. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178鈥?9. CrossRef
    44. Krzywinski M, Schein J, Birol 陌, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639鈥?5. CrossRef
    45. Lee T-H, Tang H, Wang X, Paterson AH. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res. 2013;41(D1):D1152鈥?. CrossRef
    46. Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38 suppl 2:W64鈥?0. CrossRef
    47. Alexa A, Rahnenf眉hrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22(13):1600鈥?. CrossRef
    48. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2鈥夆垝鈥壩斘擟T method. Methods. 2001;25(4):402鈥?. CrossRef
    49. Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato. Plant J. 2002;31(6):777鈥?6. CrossRef
    50. Choi DS, Hwang BK. Proteomics and functional analyses of pepper Abscisic acid鈥搑esponsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell Online. 2011;23(2):823鈥?2. CrossRef
    51. Yang H, Yang S, Li Y, Hua J. The arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiol. 2007;145(1):135鈥?6. CrossRef
    52. Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol. 2000;20(2):429鈥?0. CrossRef
    53. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12(2):87鈥?8. CrossRef
    54. Consortium TPGS. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475(7355):189鈥?5. CrossRef
    55. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci. 2014;111(4):5135鈥?0. CrossRef
    56. Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A, et al. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun. 2014;5:3833. CrossRef
    57. Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, et al. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 2013;9(7):e1003653. CrossRef
    58. Morgenstern B, Atchley WR. Evolution of bHLH transcription factors: modular evolution by domain shuffling? Mol Biol Evol. 1999;16(12):1654鈥?3. CrossRef
    59. Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 2008;177(2):301鈥?8. CrossRef
    60. Yang D-L, Yao J, Mei C-S, Tong X-H, Zeng L-J, Li Q, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci. 2012;109(19):E1192鈥?00. CrossRef
    61. Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, et al. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot. 2006;57(11):2867鈥?8. CrossRef
    62. Ogo Y, Nakanishi Itai R, Nakanishi H, Kobayashi T, Takahashi M, Mori S, et al. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J. 2007;51(3):366鈥?7. CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The basic helix-loop-helix (bHLH) proteins are a superfamily of transcription factors that can bind to specific DNA target sites. They have been well characterized in model plants such as Arabidopsis and rice and have been shown to be important regulatory components in many different biological processes. However, no systemic analysis of the bHLH transcription factor family has yet been reported in tomatoes. Tomato yellow leaf curl virus (TYLCV) threatens tomato production worldwide by causing leaf yellowing, leaf curling, plant stunting and flower abscission. Results A total of 152 bHLH transcription factors were identified from the entire tomato genome. Phylogenetic analysis of bHLH domain sequences from Arabidopsis and tomato facilitated classification of these genes into 26 subfamilies. The evolutionary and possible functional relationships revealed during this analysis are supported by other criteria, including the chromosomal distribution of these genes, the conservation of motifs and exon/intron structural patterns, and the predicted DNA binding activities within subfamilies. Distribution mapping results showed bHLH genes were localized on the 12 tomato chromosomes. Among the 152 bHLH genes from the tomato genome, 96 bHLH genes were detected in the TYLCV-susceptible and resistant tomato breeding line before (0 dpi) and after TYLCV (357 dpi) infection. As anticipated, gene ontology (GO) analysis indicated that most bHLH genes are related to the regulation of macromolecule metabolic processes and gene expression. Only four bHLH genes were differentially expressed between 0 and 357 dpi. Virus-induced gene silencing (VIGS) of one bHLH genes SlybHLH131 in resistant lines can lead to the cell death. Conclusion In the present study, 152 bHLH transcription factor genes were identified. One of which bHLH genes, SlybHLH131, was found to be involved in the TYLCV infection through qRT-PCR expression analysis and VIGS validation. The isolation and identification of these bHLH transcription factors facilitated clarification of the molecular genetic basis for the genetic improvement of tomatoes and the development of functional gene resources for transgenic research. In addition, these findings may aid in uncovering an unexplored mechanism during the TYLCV infection in tomatoes.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.