Effects of Na+/K+ ratio of groundwaters on the gill ion-transport enzyme activity, plasma osmolality and growth of Cynoglossus semilaevis juveniles
详细信息    查看全文
  • 作者:Huizan Yang (1)
    Luqing Pan (1)
    Fawen Hu (1)
    Hongyu Liu (1)
  • 关键词:Na+/K+ ratio ; Cynoglossus semilaevi ; ion ; transport enzyme activity ; plasma osmolality growth
  • 刊名:Journal of Ocean University of China
  • 出版年:2008
  • 出版时间:November 2008
  • 年:2008
  • 卷:7
  • 期:4
  • 页码:447-452
  • 全文大小:333KB
  • 参考文献:1. Allan, G. L., and D. S. Fielder, 2002. Can aquaculture help address problems with rising salinity in Australia? / Book of Abstracts-World Aquaculture 2002, 32pp.
    2. Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. / Anal. Biochem., 72: 248-54. CrossRef
    3. Brett, J. R., 1979. Environmental factors and growth. In: / Fish Physiology—Bioenergetics and Growth, Vol. 8. Hoar, W. S., / et al., eds., Academic Press, New York. 8599-675.
    4. De Renzis, G., and M. Bornancin, 1984. Ion transport and gill ATPases. In: / Fish Physiology—Ion and Water Transport, Vol. 10B. Hoar, W. S., and Randall, D. J., eds., Academic Press, New York, 65-04.
    5. Diaz, M., S. Cozzi, E. Almansa, and M. Casariego, 1998. Characterization of intestinal Na+-K+-ATPase in the gilthead seabream ( / Sparus aurata L.). Evidence for a tissue-specific heterogeneity. / J. Comp. Biochem. Physiol., 121B: 65-6 CrossRef
    6. Febry, R., and P. Lutz, 1987. Energy partitioning in fish: the activity-related cost of osmoregulation in eryhaline cichlid. / J. Exp. Biol., 128: 63-5.
    7. Fielder, D. S., W. J. Bardsley, and G. L. Allan, 2001. Survival and growth of Australian snapper, / Pagrus auratus, in saline groundwater from inland New South Wales, Australia. / Aquaculture, 201: 73-0. CrossRef
    8. Forsberg, J. A., P. W. Dorsett, and W. H. Neill, 1996. Survival and growth of red drum / sciaenops ocellatus in saline groundwaters of West Texas, USA. / J. World Aquacult. Soc., 27(4): 462-74. CrossRef
    9. Fuentes, J., J. L. Soengas, and E. Rebolledo, 1995. HCO3 ?/sup>-ATPase and Ca2+ dependent ATPase activities in the gills of the rainbow trout after the transfer to brackishwater and seawater. / Rev. Esp. Fisiol., 51(2): 93-00.
    10. Gaumet, F., G.. Boeuf, A. Severe, A. Le Roux, and N. Mayer-Gostan, 1995. Effects of salinity of the ionic balance and growth of juvenile turbot. / J. Fish Biol., 47: 865-76. CrossRef
    11. Holiday, C. W., 1985. Salinity induced changes in gill Na+, K+-ATPase activity in the mud fiddler crab, / Uca pugnac. J. Ecp. Zool., 233: 199-08. CrossRef
    12. Imsland, A. K., A. Foss, S. Gunnarsson, M. H. G. Berntssen, R. Fitzgerald, S. W. Bonga, / et al., 2001. The interaction of temperature and salinity on growth and food conversion in juvenile turbot ( / Scophthalmus maximus). / Aquaculture, 198: 353-67. CrossRef
    13. Kasbekar, D. K., and R. P. Durbin, 1965. An adenosine triphosphatase from frog gastris mucosa. / Biochim. Biophys., Acta, 105: 472-82.
    14. Kelly, S. P., I. N. K. Chow, and N. Y. S. Woo, 1999. Haloplasticity of black seabream ( / Mylio macrocephalus): hypersaline to freshwater acclimation. / J. Exp. Zool., 283: 226-41. CrossRef
    15. Kuhlmann, D., G. Quantz, 1980. Some effects of temperature and salinity on the embryonic development in incubation time of the turbot, / Scophthalmus maximus L., from the Baltic Sea. / Meeresforschung, 28: 172-78.
    16. Lee, S. H., 1982. Salinity adaptation of HCO3-dependent ATPase activity in the gills of blue crab ( / Callinectes sapidus). / Biochim. Biophys. Acta, 689: 143-54. CrossRef
    17. Lee, T. H., P. P. Hwang, Y. E. Shieh, and C. H. Lin, 2000. The relationship between ‘deep-hole-mitochondria-rich cells and salinity adaptation in the euryhaline teleost, / Oreochromis mossambicus. Fish Physiol. Biochem., 23: 133-40. CrossRef
    18. Lee, T. H., S. H. Feng, C. H. Lin, Y. H. Hwang, C. L. Huang, and P. P. Hwang, 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, / Oreochromis mossambicus. Zool. Sci., 20: 29-6. CrossRef
    19. Liang, C. T., and B. Sacktor, 1976. Bicarbonate-stimulated ATPase in the renal proximal tubule luminal (brush border) membrane. / Archs. Biochem. Biophys., 176: 285-97. CrossRef
    20. Luís, A. S., and B. Adalto, 2002. Salinity effects on osmoregulation and growth of the euryhaline flounder / Paralichthys orbignyanus. / J. Exp. Mar. Biol. Ecol., 269: 187-96. CrossRef
    21. Madsen, S. S., B. K. Larsen, and F. B. Jensen, 1996. Effects of freshwater to seawater transfer on osmoregulation, acid-base balance and respiration in river migration whitefish ( / Coregonus lavaretus). / J. Comp. Physiol., 166B: 101-09.
    22. Mancera, J. M., J. M. Perez-Figares, and P. Fernandez-Llebrez, 1993. Osmoregulatory responses to abrupt salinity changes in the euryhaline gilthead sea bream ( / Sparus aurata L). / Comp. Biochem. Physiol., 106A: 245-50. CrossRef
    23. Marshall, W. S., and S. E. Bryson, 1998. Transport mechanisms of seawater teleost chloride cells: an inclusive model of a multifunctional cell. / Comp. Biochem. Physiol., 119A: 97-06.
    24. Morgan, J. D., and G. K. Iwama, 1999. Energy cost of NaCl transport in isolated gills of cutthroat trout. / Am. J. Physiol., 277: R631-39.
    25. Morgan, J. D., and T. Sakamoto, 1997. Physiological and respiratory responses of the Mozambique tilapia ( / Oreochromis mossambicus) to salinity acclimation. / Comp. Biochem. Physiol., 117A: 391-98. CrossRef
    26. Moustakas, C. T., W. O. Watanabe, and K. A. Copeland, 2004. Combined effects of photoperiod and salinity on growth, survival, and osmoregulatory ability of larval southern flounder / Paralichthys lethostigma. / Aquaculture, 229: 159-79. CrossRef
    27. Moyle, P. B., and J. J. Cech Jr., 2000. Hydromineral balance. In: / Fishes—An Introduction to Ichthyology. Prentice Hall, Upper Saddle River, NJ, 79-6.
    28. Pagliarani, A., V. Ventrella, F. Trobetti, G.. Trigari, A. Borgatti, 1988. (Na++ K+) and Na+-stimulated ATPase activities in the kidney of sea bass ( / Dicentrachus labrax L.). / Comp. Biochem. Physiol., 90B: 41-2.
    29. Pfeiler, E., and L. Kirschner, 1972. Studies on gill ATPase on rainbow trout ( / Salmo gairderi). / Biochim. Biophys. Acta, 282: 301-10. CrossRef
    30. Sakamoto, T., K. Uchida, and S. Yokota, 2001. Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleosts fishes to different salinities. / Zool. Sci., 18: 1163-174. CrossRef
    31. Stuenkel, E. L., and S. D. Hillyard, 1980. Effects of temperature and salinity on gill Na+, K+-ATPase activity in the pupfish, / Cyprinodon salinus. Comp. Biochem. Physiol., 67A: 179-82 CrossRef
    32. Trigari, G.., A. Borgatti, A. Pagliarani, and V. Ventrella, 1985. Characterization of gill (Na++ K+)-ATPase in the sea bass ( / Dicentrachus labrax L.). / Comp. Biochem. Physiol., 80B: 23-3.
    33. Whealty, M. G.., and R. P. Hentry, 1987. Branchial and antennal Na+/K+-dependent ATPase and carbonie anhydrase activity during salinity acclimation of the euryhaline crayfish / Pacifastacus leniuscndus. / J. Exp. Biol., 133: 73-6.
    34. Wheeler, A. P., and E. W. Harrison, 1982. Subcellular localization and characterization of HCO3 ?/sup>-ATPase from the mantle of the freshwater clam, Anodonta cataracta. / Comp. Biochem. Physiol., 71B: 629-36.
    35. Wilson, J. M., and P. Laurent, 2002. Fish gill morphology: inside out. / J. Exp. Zool., 293: 192-13. CrossRef
    36. Woo, N. Y. S., and K. C. Chung, 1995. Tolerance of / Pomacanthus imperator to hypoosmotic salinity: changes in body composition and hepatic enzyme activities. / J. Fish. Biol., 47: 70-1.
    37. Zadunaisky, J. A., 1984. The chloride cell: the active transport of chloride and the paracellular pathways. / Fish Physiol., 10B: 130-76.
  • 作者单位:Huizan Yang (1)
    Luqing Pan (1)
    Fawen Hu (1)
    Hongyu Liu (1)

    1. The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, P. R. China
  • ISSN:1993-5021
文摘
The effects of environmental Na+/K+ ratio on the gill ion-transport enzyme activity, plasma osmolality and growth of Cynoglossus semilaevis juveniles were investigated. The results showed that, plasma osmolality was similar among flounder adapted to different Na+/K+ ratios of saline groundwaters (P>0.05), while the growth, gill Na+, K+-ATPase and HCO3 ?/sup>-ATPase activities were affected by Na+/K+ ratio significantly (P<0.05). The gill Na+, K+-ATPase activity reached its maximum on day 3, then decreased gradually from day 3 to day 9 and remained constant from day 9 to day 15. The peak values of gill Na+, K+-ATPase activity were detected on day 3 for all Na+/K+ ratios of saline groundwaters, then the enzyme activities descended, and on day 9 the enzyme activities achieved steady state, and the gill HCO3 ?/sup>-ATPase activity increased rapidly and achieved steady state after one day. During steady state, the gill Na+, K+-ATPase and HCO3 ?/sup>-ATPase activity of Na+/K+ ratios 20 and 40 treatments were significantly higher than those in the control group (Na+/K+ ratio 27.5), while there were no significant differences between the Na+/K+ ratio 30 treatment and the control group; the gill Na+, K+-ATPase activity of Na+/K+ ratio 20 and 40 treatments were significantly higher than that for ratio 30 treatment, but there were no significant differences of gill HCO3 ?/sup>-ATPase activity among these treatments. At the end of the 15-day experiment, the weight gain (%) and specific growth rate (SGR) of flounders maintained in seawater were significantly higher than those in groundwaters; significant differences also occurred among the treatments; Na+/K+ ratio 30 treatment had the highest values (33.7% and 1.94 respectively), which were significantly higher than those under Na+/K+ ratios 20 and 40 treatments. Therefore, for the saline groundwater used in this experiment, it is suggested that the Na+/K+ ratio be adjusted to approximately 30, i.e., as close to that of natural seawater as possible in the culture of flounder.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.