Regional landslide susceptibility zoning with considering the aggregation of landslide points and the weights of factors
详细信息    查看全文
  • 作者:Xueliang Wang (1)
    Luqing Zhang (1)
    Sijing Wang (1)
    Serena Lari (2)
  • 关键词:Landslide susceptibility ; Class landslide susceptibility index ; Landslide point aggregation ; Uncertainty ; Validation
  • 刊名:Landslides
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:11
  • 期:3
  • 页码:399-409
  • 全文大小:
  • 参考文献:1. Agliardi F, Crosta GB, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1-):83-02 CrossRef
    2. Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54:1127-143 CrossRef
    3. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21-4 CrossRef
    4. Ambrosi C, Crosta GB (2006) Large sackung along major tectonic features in the Central Italian Alps. Eng Geol 83(1-):183-00 CrossRef
    5. Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazard Earth Syst Sci 2:3-4 CrossRef
    6. Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1(1):73-1
    7. Ayalew L, Yamagishi H, Maruib H, Kannoc T (2005) Landslides in Sado Island of Japan: part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng Geol 81(4):432-45
    8. Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21(18-9):1935-017 CrossRef
    9. Buchin K, Buchin M, Kreveld MV, L?ffler M, Luo J, Silveira RI (2011) Processing aggregated data: the location of clusters in health data. GeoInformatica 16:497-21. doi:10.1007/s10707-011-0143-6 CrossRef
    10. Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC Journal 2:172-83
    11. Carrara A, Cardinalli M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazard. Kluwer, London, pp pp 173-75 CrossRef
    12. Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Landslide hazard map for the Upper Tiber River basin. CNR, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Publication n. 2116, scale 1:100,000.
    13. Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102(3-):164-77 CrossRef
    14. Castellanos Abella EA, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantanamo, Cuba. Geomorphology 94(3-):453-66 CrossRef
    15. Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazard 30(3):451-72 CrossRef
    16. Chau KT, Sze YL, Fung MK, Wong WY, Fong EL, Chan LCP (2004) Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput Geosci 30:429-43 CrossRef
    17. Crosta GB, Imposimato S, Roddeman D, Chiesa S, Moia F (2005) Small fast-moving flow-like landslides in volcanic deposits: the 2001 Las Colinas Landslide (El Salvador). Eng Geol 79(3-):185-14 CrossRef
    18. Crosta GB, Clague JJ (2006) Large landslides: dating, triggering, modelling, and hazard assessment. Eng Geol 83(1-):1- CrossRef
    19. Crosta GB, Clague JJ (2009) Dating, triggering, modelling, and hazard assessment of large landslides. Geomorphology 103(1):1-
    20. Crosta GB, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Natural Hazards and Earth System Science 3(5):407-22 CrossRef
    21. Cruden DM (1976) Major rock slides in the Rockies. Can Geotech J 13:8-0 CrossRef
    22. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65-7
    23. Fall M, Azzamb R, Noubactep C (2006) A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Eng Geol 82(4):241-63
    24. Fell R, Cororninas J, Bonnard C, Cascini L, Leroi E, Savage WZ et al (2008) Guidelines for landslide susceptibility, hazard and risk-zoning for land use planning. Eng Geol 102(3-):85-8 CrossRef
    25. Frattini P, Crosta GB, Fusi N, Dal Negro P (2004) Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment. Eng Geol 73(3-):277-95 CrossRef
    26. Frattini P, Crosta GB, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94(3-):419-37 CrossRef
    27. Frattini P, Crosta GB, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1-):62-2 CrossRef
    28. Friedman D, Diaconis P (1981) On the histograms of a density estimator L2 theory. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 57:453-76 CrossRef
    29. Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268-89 CrossRef
    30. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181-16 CrossRef
    31. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166-84 CrossRef
    32. Gutiérrez-Santolalla F, Acosta E, Ríos S, Guerrero J, Lucha P (2005) Geomorphology and geochronology of sackung features (uphill-facing scarps) in the Central Spanish Pyrenees. Geomorphology 69(1-):298-14 CrossRef
    33. Hartlen J, Viberg L (1988) General report: evaluation of landslide hazard. Proceedings of the fifth international symposium on landslides, Balkema, Lausanne, pp 1037-057
    34. Heim A (1932) Bergsturz und Menschenleben. Beiblatt zur Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 20:214
    35. Hovius N, Stark CP, Tutton MA, Abbott LD (1998) Landslide-driven drainage network evolution in a re-steady-state mountain belt: Finisterre Mountains, Papua New Guinea. Geology 26(12):1071-074 CrossRef
    36. Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to Geology and Hydrogeology. In: Bonnard C (ed) Proceedings of the fifth international symposium on landslides, vol 1. Balkema, Rotterdam, pp 3-5
    37. Jenks GF (1963) Generalization in statistical mapping. Ann Assoc Am Geogr 53(1):15-6 CrossRef
    38. Kouli M, Loupasakis C, Soupios P, Vallianatos F (2010) Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece. Nat Hazard 52(3):599-21 CrossRef
    39. Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol 76(1-):109-28 CrossRef
    40. Lee S (2004) Application of likelihood ratio and logistic regression model for landslide susceptibility mapping using GIS. Environ Manage 34:223-32 CrossRef
    41. Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50:847-55 CrossRef
    42. Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33-1 CrossRef
    43. Lee S, Ryu JH, Kim IS (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides 4:327-38 CrossRef
    44. Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213-25. doi:10.1016/0169-555X(95)00071-C CrossRef
    45. Martel SJ (2000) Modeling elastic stresses in long ridges with the displacement discontinuity method. Pure Appl Geophys 157:1039-057 CrossRef
    46. Molnar P (2004) Interactions among topographically induced elastic stress, static fatigue, and valley incision. J Geophys Res 109:F02010. doi:10.1029/2003/JF000097
    47. Remondo J, González A, Díaz De Terán JR, Cendrero A, Fabbri A, Chung CF (2004) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazard 30(3):437-49 CrossRef
    48. Ruff M, Czurda K (2008) Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology 94(3-):314-24 CrossRef
    49. Saaty TL (1980) The analytical hierarchy process. McGraw Hill, New York
    50. Saaty LT, Vargas LG (2001) Models, methods, concepts, and applications of the analytic hierarchy process. Kluwer Academic, Boston, p 333 CrossRef
    51. Savage WZ, Swolfs HS (1986) Tectonic and gravitational stress in long symmetric ridges and valleys. J Geophys Res 91:3677-685 CrossRef
    52. Savage WZ, Swolfs HS, Powers PS (1985) Gravitational stress in long symmetric ridges and valleys. International Journal of Rock Mechanics Mining Sciences 22:291-02 CrossRef
    53. Scott DW (1979) On optimal and data-based histograms. Biometrika 66(3):605-10
    54. Suzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71(3-):303-21 CrossRef
    55. Tu HM, Liu ZD (1990) Demonstration on optimum statistic unit of relief amplitude in China. Journal of Hubei University (Natural Science) l2(3):266-71
    56. Van Westen CJ (1994) GIS in landslide hazard zonation: a review, with examples from the Andes of Colombia. In: Price M, Heywood I (eds) Mountain environments and geographic information system. Taylor and Francis, London, pp 135-65
    57. Varnes DJ, IAEG (International Association for Engineering Geology) (1984) Commission on Landslides and Other Mass Movements. Landslide hazard zonation: a review of principles and practice. UNESCO Press, Paris, 63
    58. Wang XL, Zhang LQ, Wang SJ, Agliardi F, Frattini P, Crosta GB, Yang ZF (2012) Field investigation and rockfall hazard zonation at the Shjing Mountains Sutra caves cultural heritage (China). Environmental Earth Sciences 66(7):1897-908 CrossRef
    59. Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72(1):1-2 CrossRef
    60. Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides(Tokat—Turkey). Comput Geosci 35:1125-138 CrossRef
  • 作者单位:Xueliang Wang (1)
    Luqing Zhang (1)
    Sijing Wang (1)
    Serena Lari (2)

    1. Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
    2. Dipartimento di Scienze Geologiche e Geotecnologie, Università degli Studi di Milano-Bicocca, Milano, Italy
  • ISSN:1612-5118
文摘
In this paper, we propose a methodology for landslide susceptibility assessment at a regional scale in Yunnan, southwestern province of China. A landslide inventory map including 3,242 landslide points was prepared for the study area. Five factors recognized as correlated to landslide (namely, lithology, relative relief, tectonic fault density, rainfall, and road density) were analyzed and mapped in geographic information system. An index expressing the correlation between each factor and landslides [called class landslide susceptibility index (CLSI)] was proposed in the study. While analyzing landslide distribution in a large area, point aggregation might be expected. To quantify the uncertainty caused by aggregation, class landslide aggregation index was proposed. To account for the importance of each of the factors in the landslide susceptibility assessment, some weights were calculated by means of analytic hierarchy process. We propose a weighted class landslide susceptibility model (WCLSM), obtained by the combination of CLSI values of each factor with the correspondent weight. WCLSM performance in the study area was evaluated comparing the results obtained by first modeling all landslides and then by performing a time partition. The model was run including only landslides that occurred before 2009 and then validated with respect to landslides that occurred after 2009. The prediction–rate curve shows that the WCLSM model provides a good prediction for the study area. Of the study area, 21.4?% shows very high and high susceptibility and includes the 87.7?% of the number of landslides that occurred after 2009.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.