Interaction of nucleotide excision repair protein XPC—RAD23B with DNA containing benzo[a]pyrene-derived adduct and apurinic/apyrimidinic site within a cluster
详细信息    查看全文
  • 作者:L. V. Starostenko ; E. A. Maltseva ; N. A. Lebedeva…
  • 刊名:Biochemistry (Moscow)
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:81
  • 期:3
  • 页码:233-241
  • 全文大小:1,497 KB
  • 参考文献:1.Verma, N., Pink, M., Rettenmeier, A. W., and Schmitz-Spanke, S. (2012) Review on proteomic analyses of benzo[a]pyrene toxicity, Proteomics, 12, 1731–1755.CrossRef PubMed
    2.Alexandrov, K., Rojas, M., and Satarug, S. (2010) The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation, Toxicol. Lett., 198, 63–68.CrossRef PubMed
    3.Skosareva, L. V., Lebedeva, N. A., Lavrik, O. I., and Rechkunova, N. I. (2013) Repair of bulky DNA damages — derivatives of polycyclic aromatic hydrocarbons, Mol. Biol. (Moscow), 47, 731–742.CrossRef
    4.Braithwaite, E., Wu, X., and Wang, Z. (1998) Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts: involvement of two excision repair mechanisms in vitro, Carcinogenesis, 19, 1239–1246.CrossRef PubMed
    5.Mocquet, V., Kropachev, K., Kolbanovskiy, M., Kolbanovskiy, A., Tapias, A., Cai, Y., Broyde, S., Geacintov, N. E., and Egly, J. M. (2007) The human DNA repair factor XPC—HR23B distinguishes stereoisomeric benzo[a]pyrenyl–DNA lesions, EMBO J., 26, 2923–2932.CrossRef PubMed PubMedCentral
    6.Baskunov, V. B., Subach, F. V., Kolbanovskiy, A., Kolbanovskiy, M., Eremin, S. A., Johnson, F., Bonala, R., Geacintov, N. E., and Gromova, E. S. (2005) Effects of benzo[a]pyrene–deoxyguanosine lesions on DNA methylation catalyzed by EcoRII DNA methyltransferase and on DNA cleavage effected by EcoRII restriction endonuclease, Biochemistry, 44, 1054–1066.CrossRef PubMed
    7.Subach, O. M., Baskunov, V. B., Darii, M. V., Maltseva, D. V., Alexandrov, D. A., Kirsanova, O. V., Kolbanovskiy, A., Kolbanovskiy, M., Johnson, F., Bonala, R., Geacintov, N. E., and Gromova, E. S. (2006) Impact of benzo[a]pyrene–2'-deoxyguanosine lesions on methylation of DNA by SssI and HhaI DNA methyltransferases, Biochemistry, 45, 6142–6159.CrossRef PubMed
    8.Subach, O. M., Maltseva, D. V., Shastry, A., Kolbanovskiy, A., Klimasauskas, S., Geacintov, N. E., and Gromova, E. S. (2007) The stereochemistry of benzo[a]pyrene–2-deoxyguanosine adducts affects DNA methylation by SssI and HhaI DNA methyltransferases, FEBS J., 274, 2121–2134.CrossRef PubMed
    9.Minero, A. S., Lukashevich, O. V., Cherepanova, N. A., Kolbanovskiy, A., Geacintov, N. E., and Gromova, E. S. (2012) Probing murine methyltransferase Dnmt3a interactions with benzo[a]pyrene-modified DNA by fluorescence methods, FEBS J., 279, 3965–3980.CrossRef PubMed PubMedCentral
    10.Buterin, T., Hess, M. T., Luneva, N., Geacintov, N. E., Amin, S., Kroth, H., Seidel, A., and Naegeli, H. (2000) Unrepaired fjord region polycyclic aromatic hydrocarbon–DNA adducts in ras codon 61 mutational hot spots, Cancer Res., 60, 1849–1856.PubMed
    11.Gunz, D., Hess, M. T., and Naegeli, H. (1996) Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism, J. Biol. Chem., 271, 25089–25098.CrossRef PubMed
    12.Isaacs, R. J., and Spielmann, H. P. (2004) A model for initial DNA lesion recognition by NER and MMR based on local conformational flexibility, DNA Repair (Amst.), 3, 455–464.CrossRef
    13.Gates, K. S. (2009) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals, Chem. Res. Toxicol., 22, 1747–1760.CrossRef PubMed PubMedCentral
    14.Sage, E., and Harrison, L. (2011) Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival, Mutat. Res., 711, 123–133.CrossRef PubMed PubMedCentral
    15.Sung, J. S., and Demple, B. (2006) Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA, FEBS J., 273, 1620–1629.CrossRef PubMed
    16.Scharer, O. D. (2003) Chemistry and biology of DNA repair, Angew. Chem. Int. Ed. Engl., 42, 2946–2974.CrossRef PubMed
    17.Skosareva, L. V., Lebedeva, N. A., Rechkunova, N. I., Kolbanovskiy, A., Geacintov, N. E., and Lavrik, O. I. (2012) Human DNA polymerase λ catalyzes lesion bypass across benzo[a]pyrene-derived DNA adduct during base excision repair, DNA Repair (Amst.), 11, 367–373.CrossRef
    18.Starostenko, L. V., Rechkunova, N. I., Lebedeva, N. A., Kolbanovskiy, A., Geacintov, N. E., and Lavrik, O. I. (2014) Human DNA polymerases catalyze lesion bypass across benzo[a]pyrene-derived DNA adduct clustered with an abasic site, DNA Rep. (Amst.), 24, 1–9.CrossRef
    19.Constant, J.-F., and Demeunynck, M. (2003) Design and studies of abasic site targeting drugs: new strategies for cancer chemotherapy, in Small Molecule DNA and RNA Binders. From Synthesis to Nucleic Acid Complexes (Demeunynck, M., Baily, C., and Wilson, W. D., eds.) Vol. 1, Wiley VCH, Verlag GmbH, Weinheim, pp. 247–277.
    20.Sugasawa, K., Okamoto, T., Shimizu, Y., Masutani, C., Iwai, S., and Hanaoka, F. (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair, Genes Dev., 15, 507–521.CrossRef PubMed PubMedCentral
    21.Gillet, L. C., and Scharer, O. D. (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair, Chem. Rev., 106, 253–276.CrossRef PubMed
    22.Maillard, O., Camenisch, U., Clement, F. C., Blagoev, K. B., and Naegeli, H. (2007) DNA repair triggered by sensors of helical dynamics, Trends Biochem. Sci., 32, 494–499.CrossRef PubMed
    23.Maltseva, E. A., Rechkunova, N. I., Petruseva, I. O., Vermeulen, W., Scharer, O. D., and Lavrik, O. I. (2008) Crosslinking of nucleotide excision repair proteins with DNA containing photoreactive damages, Bioorg. Chem., 36, 77–84.CrossRef PubMed
    24.Skosareva, L. V., Lebedeva, N. A., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., and Lavrik, O. I. (2012) Interaction of nucleotide excision repair proteins with DNA containing bulky lesion and apurinic/apyrimidinic site, Biochemistry (Moscow), 77, 524–531.CrossRef
    25.Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., Sugasawa K., and Hanaoka, F. (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein, Mol. Cell. Biol., 25, 5664–5674.CrossRef PubMed PubMedCentral
    26.Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd Edn., Cold Spring Harbor Laboratory Press, N. Y., pp. 10.2–10.70.
    27.Reeves, D. A., Mu, H., Kropachev, K., Cai, Y., Ding, Sh., Kolbanovskiy, A., Kolbanovskiy, M., Chen, Y., Krzeminski, J., Amin, Sh., Patel, D. J., Broyde, S., and Geacintov, N. E. (2011) Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion–base stacking interactions, Nucleic Acids Res., 39, 8752–8764.CrossRef PubMed PubMedCentral
    28.Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRef PubMed
    29.Lee, Y. C., Cai, Y., Mu, H., Broyde, S., Amin, S., Chen, X., Min, J. H., and Geacintov, N. E. (2014) The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: is there a correlation? DNA Repair (Amst.), 19, 55–63.CrossRef
    30.Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J. H., and Lavrik, O. I. (2013) Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair, J. Biol. Chem., 288, 10936–10947.CrossRef PubMed PubMedCentral
    31.Petruseva, I. O., Tikhanovich, I. S., Chelobanov, B. P., and Lavrik, O. I. (2008) RPA repair recognition of DNA containing pyrimidines bearing bulky adducts, J. Mol. Recognit., 21, 154–162.CrossRef PubMed
    32.Kosova, A. A., Khodyreva, S. N., and Lavrik, O. I. (2015) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with apurinic/apyrimidinic sites in DNA, Mutat. Res., 779, 46–57.CrossRef PubMed
    33.Hadi, M. Z., Coleman, M. A., Fidelis, K., Mohrenweiser, H. W., and Wilson, D. M., 3rd (2000) Functional characterization of Ape1 variants identified in the human population, Nucleic Acids Res., 28, 3871–3879.CrossRef PubMed PubMedCentral
    34.Chou, K. M., and Cheng, Y. C. (2002) An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3' mispaired DNA, Nature, 415, 655–659.CrossRef PubMed
    35.Sukhanova, M. V., Khodyreva, S. N., Lebedeva, N. A., Prasad, R., Wilson, S. H., and Lavrik, O. I. (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity, Nucleic Acids Res., 33, 1222–1229.CrossRef PubMed PubMedCentral
    36.Shimizu, Y., Uchimura, Y., Dohmae, N., Saitoh, H., Hanaoka, F., and Sugasawa, K. (2010) Stimulation of DNA glycosylase activities by XPC protein complex: roles of protein–protein interactions, J. Nucleic Acids, pii: 805698.
    37.Masuda, Y., Bennett, R. A., and Demple, B. (1998) Dynamics of the interaction of human apurinic endonuclease (Ape1) with its substrate and product, J. Biol. Chem., 273, 30352–30359.CrossRef PubMed
    38.Liu, Z., Ding, S., Kropachev, K., Lei, J., Amin, S., Broyde, S., and Geacintov, N. E. (2015) Resistance to nucleotide excision repair of bulky guanine adducts opposite abasic sites in DNA duplexes and relationships between structure and function, PLoS One, 10, e0137124.CrossRef PubMed PubMedCentral
  • 作者单位:L. V. Starostenko (1)
    E. A. Maltseva (1)
    N. A. Lebedeva (1) (2)
    P. E. Pestryakov (1)
    O. I. Lavrik (1) (2)
    N. I. Rechkunova (1) (2)

    1. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
    2. Novosibirsk State University, 630090, Novosibirsk, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Bioorganic Chemistry
    Microbiology
    Biomedicine
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3040
文摘
The combined action of reactive metabolites of benzo[a]pyrene (B[a]P) and oxidative stress can lead to cluster-type DNA damage that includes both a bulky lesion and an apurinic/apyrimidinic (AP) site, which are repaired by the nucleotide and base excision repair mechanisms — NER and BER, respectively. Interaction of NER protein XPC—RAD23B providing primary damage recognition with DNA duplexes containing a B[a]P-derived residue linked to the exocyclic amino group of a guanine (BPDE-N2-dG) in the central position of one strand and AP site in different positions of the other strand was analyzed. It was found that XPC—RAD23B crosslinks to DNA containing (+)-trans-BPDE-N2-dG more effectively than to DNA containing cis-isomer, independently of the AP site position in the opposite strand; protein affinity to DNA containing one of the BPDE-N2-dG isomers depends on the AP site position in the opposite strand. The influence of XPC—RAD23B on hydrolysis of an AP site clustered with BPDE-N2-dG catalyzed by the apurinic/apyrimidinic endonuclease 1 (APE1) was examined. XPC—RAD23B was shown to stimulate the endonuclease and inhibit the 3′–5′ exonuclease activity of APE1. These data demonstrate the possibility of cooperation of two proteins belonging to different DNA repair systems in the repair of cluster-type DNA damage.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.