Dermcidin expression is associated with disease progression and survival among breast cancer patients
详细信息    查看全文
  • 作者:Heather Ann Brauer (1) (2) (3)
    Monica D’Arcy (3)
    Tanya E. Libby (2)
    Henry J. Thompson (4)
    Yutaka Y. Yasui (5)
    Nobuyuki Hamajima (6)
    Christopher I. Li (2)
    Melissa A. Troester (3) (7) (8)
    Paul D. Lampe (1) (2)
  • 关键词:Dermcidin ; Breast cancer ; Serum ; Microenvironment
  • 刊名:Breast Cancer Research and Treatment
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:144
  • 期:2
  • 页码:299-306
  • 全文大小:298 KB
  • 参考文献:1. Buist D, Bosco J, Silliman RA, Gold HT (2013) Long-term surveillance mammography and mortality in older women with a history of early stage invasive breast cancer. Breast Cancer Res 142(1):153-3. doi:10.1080/10810730.2013.825673
    2. Anderson WF, Chen BE, Brinton LA, Devesa SS (2007) Qualitative age interactions (or effect modification) suggest different cancer pathways for early-onset and late-onset breast cancers. Cancer Causes Control 18:1187-198. doi:10.1007/s10552-007-9057-x CrossRef
    3. Collett K, Stefansson IM, Eide J et al (2005) A basal epithelial phenotype is more frequent in interval breast cancers compared with screen detected tumors. Cancer Epidemiol Biomarkers Prev 14:1108-112. doi:10.1158/1055-9965.EPI-04-0394 CrossRef
    4. Saunders NA, Simpson F, Thompson EW et al (2012) Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med 4:675-84. doi:10.1002/emmm.201101131 CrossRef
    5. Mari? P, Ozreti? P, Levanat S et al (2011) Tumor markers in breast cancer-evaluation of their clinical usefulness. Coll Antropol 35:241-47
    6. Mannello F, Medda V, Tonti GA (2009) Protein profile analysis of the breast microenvironment to differentiate healthy women from breast cancer patients. Expert Rev Proteomics 6:43-0. doi:10.1586/14789450.6.1.43 CrossRef
    7. Ebeling FG, Stieber P, Untch M et al (2002) Serum CEA and CA 15-3 as prognostic factors in primary breast cancer. Br J Cancer 86:1217-222. doi:10.1038/sj/bjc/6600248 CrossRef
    8. Gion M, Mione R, Leon AE, Dittadi R (1999) Comparison of the diagnostic accuracy of CA27.29 and CA15.3 in primary breast cancer. Clin Chem 45:630-37
    9. Brauer HA, Libby TE, Mitchell BL et al (2011) Cruciferous vegetable supplementation in a controlled diet study alters the serum peptidome in a GSTM1-genotype dependent manner. Nutr J 10:11. doi:10.1186/1475-2891-10-11 CrossRef
    10. Mitchell BL, Yasui Y, Lampe JW et al (2005) Evaluation of matrix-assisted laser desorption/ionization-time of flight mass spectrometry proteomic profiling: identification of alpha 2-HS glycoprotein B-chain as a biomarker of diet. Proteomics 5:2238-246. doi:10.1002/pmic.200401099 CrossRef
    11. Bertucci F, Goncalves A (2008) Clinical proteomics and breast cancer: strategies for diagnostic and therapeutic biomarker discovery. Future Oncol 4:271-87. doi:10.2217/14796694.4.2.271 CrossRef
    12. Li J, Orlandi R, White CN et al (2005) Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin Chem 51:2229-235. doi:10.1373/clinchem.2005.052878 CrossRef
    13. Belluco C, Petricoin EF, Mammano E et al (2007) Serum proteomic analysis identifies a highly sensitive and specific discriminatory pattern in stage 1 breast cancer. Ann Surg Oncol 14:2470-476. doi:10.1245/s10434-007-9354-3 CrossRef
    14. van Winden AW, Gast M-CW, Beijnen JH et al (2009) Validation of previously identified serum biomarkers for breast cancer with SELDI-TOF MS: a case control study. BMC Med Genomics 2:4. doi:10.1186/1755-8794-2-4 CrossRef
    15. van Winden AO, Rodenburg W, Pennings JLA et al (2012) A bead-based multiplexed immunoassay to evaluate breast cancer biomarkers for early detection in pre-diagnostic serum. IJMS 13:13587-3604. doi:10.3390/ijms131013587 CrossRef
    16. Thompson HJ, McGinley JN, Rothhammer K, Singh M (1995) Rapid induction of mammary intraductal proliferations, ductal carcinoma in situ and carcinomas by the injection of sexually immature female rats with 1-methyl-1-nitrosourea. Carcinogenesis 16:2407-411 CrossRef
    17. Thompson HJ, Adlakha H (1991) Dose-responsive induction of mammary gland carcinomas by the intraperitoneal injection of 1-methyl-1-nitrosourea. Cancer Res 51:3411-415
    18. Randolph TW, Yasui Y (2006) Multiscale processing of mass spectrometry data. Biometrics 62:589-97. doi:10.1111/j.1541-0420.2005.00504.x CrossRef
    19. Yasui Y, Pepe M, Thompson ML et al (2003) A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4:449-63. doi:10.1093/biostatistics/4.3.449 CrossRef
    20. Yasui Y, McLerran D, Adam B-L et al (2003) An automated peak identification/calibration procedure for high-dimensional protein measures from mass spectrometers. J Biomed Biotechnol 2003:242-48 CrossRef
    21. Liska J, Galbavy S, Macejova D, Zlatos J (2000) Histopathology of mammary tumours in female rats treated with 1-methyl-1-nitrosourea. Endocr Regul 34(2):91-6
    22. Lowrie AG, Dickinson P, Wheelhouse N et al (2011) Proteolysis-inducing factor core peptide mediates dermcidin-induced proliferation of hepatic cells through multiple signalling networks. Int J Oncol 39:709-18. doi:10.3892/ijo 2011.1064
    23. Creighton CJ, Casa A, Lazard Z et al (2008) Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. J Clin Oncol 26:4078-085. doi:10.1200/JCO.2007.13.4429 CrossRef
    24. Fan C, Prat A, Parker JS et al (2011) Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures. BMC Med Genomics 4:3. doi:10.1186/1755-8794-4-3 CrossRef
    25. Anderson WF, Matsuno R (2006) Breast cancer heterogeneity: a mixture of at least two main types? JNCI J Natl Cancer Inst 98:948-51. doi:10.1093/jnci/djj295 CrossRef
    26. Anders CK, Carey LA (2009) Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer 9:S73–S81. doi:10.3816/CBC.2009.s.008 CrossRef
    27. Stewart GD, Skipworth RJE, Pennington CJ et al (2008) Variation in dermcidin expression in a range of primary human tumours and in hypoxic/oxidatively stressed human cell lines. Br J Cancer 99:126-32. doi:10.1038/sj.bjc.6604458 CrossRef
    28. Stewart GD, Lowrie AG, Riddick ACP et al (2007) Dermcidin expression confers a survival advantage in prostate cancer cells subjected to oxidative stress or hypoxia. Prostate 67:1308-317. doi:10.1002/pros.20618 CrossRef
    29. Porter D, Weremowicz S, Chin K et al (2003) A neural survival factor is a candidate oncogene in breast cancer. Proc Natl Acad Sci USA 100:10931-0936. doi:10.1073/pnas.1932980100 CrossRef
    30. Perou CM, S?rlie T, Eisen MB, van de Rijn M et al (2000) Molecular portraits of human breast tumours. Nature 406:747-52. doi:10.1038/35021093 CrossRef
  • 作者单位:Heather Ann Brauer (1) (2) (3)
    Monica D’Arcy (3)
    Tanya E. Libby (2)
    Henry J. Thompson (4)
    Yutaka Y. Yasui (5)
    Nobuyuki Hamajima (6)
    Christopher I. Li (2)
    Melissa A. Troester (3) (7) (8)
    Paul D. Lampe (1) (2)

    1. Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
    2. Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
    3. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
    4. Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
    5. School of Public Health, University of Alberta, Edmonton, AB, T6G 1C9, Canada
    6. Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanakoden, Chikusa-ku, Nagoya, 464-8681, Japan
    7. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
    8. Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
  • ISSN:1573-7217
文摘
Improved diagnostic screening has led to earlier detection of many tumors, but screening may still miss many aggressive tumor types. Proteomic and genomic profiling studies of breast cancer samples have identified tumor markers that may help improve screening for more aggressive, rapidly growing breast cancers. To identify potential blood-based biomarkers for the early detection of breast cancer, we assayed serum samples via matrix-assisted laser desorption ionization–time of flight mass spectrometry from a rat model of mammary carcinogenesis. We found elevated levels of a fragment of the protein dermcidin (DCD) to be associated with early progression of N-methylnitrosourea-induced breast cancer, demonstrating significance at weeks 4 (p?=?0.045) and 5 (p?=?0.004), a time period during which mammary pathologies rapidly progress from ductal hyperplasia to adenocarcinoma. The highest serum concentrations were observed in rats bearing palpable mammary carcinomas. Increased DCD was also detected with immunoblotting methods in 102 serum samples taken from women just prior to breast cancer diagnosis. To validate these findings in a larger population, we applied a 32-gene in vitro DCD response signature to a dataset of 295 breast tumors and assessed correlation with intrinsic breast cancer subtypes and overall survival. The DCD-derived gene signature was significantly associated with subtype (p?<?0.001) and poorer overall survival [HR (95?% CI)?=?1.60 (1.01-.51), p?=?0.044]. In conclusion, these results present novel evidence that DCD levels may increase in early carcinogenesis, particularly among more aggressive forms of breast cancer.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.