Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain
详细信息    查看全文
  • 作者:Arpád Dobolyi ; Attila G. Bagó ; Aniko Gál…
  • 关键词:Krebs cycle ; Citric acid cycle ; Substrate ; level phosphorylation ; Succinyl CoA ligase ; Microglia ; Oligodendrocytes
  • 刊名:Journal of Bioenergetics and Biomembranes
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:47
  • 期:1-2
  • 页码:33-41
  • 全文大小:6,231 KB
  • 参考文献:1. Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56(4):1376-386 CrossRef
    2. Bixel MG, Hamprecht B (1995) Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem 65(6):2450-461 CrossRef
    3. Chinopoulos C (2011a) The “B Space-of mitochondrial phosphorylation. J Neurosci Res 89(12):1897-904. doi:10.1002/jnr.22659 CrossRef
    4. Chinopoulos C (2011b) Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett 585(9):1255-259. doi:10.1016/j.febslet.2011.04.004 CrossRef
    5. Chinopoulos C (2013) Which way does the citric acid cycle turn during hypoxia? The critical role of alpha-ketoglutarate dehydrogenase complex. J Neurosci Res 91(8):1030-043. doi:10.1002/jnr.23196 CrossRef
    6. Chinopoulos C, Adam-Vizi V (2010) Mitochondria as ATP consumers in cellular pathology. Biochim Biophys Acta 1802(1):221-27. doi:10.1016/j.bbadis.2009.08.008 CrossRef
    7. Chinopoulos C, Gerencser AA, Mandi M, Mathe K, Torocsik B, Doczi J et al (2010) Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation. FASEB J 24(7):2405-416. doi:10.1096/fj.09-149898 CrossRef
    8. Conti F, Melone M, De BS, Minelli A, Brecha NC, Ducati A (1998) Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 396(1):51-3. doi:10.1002/(SICI)1096-9861(19980622)396:1<51::AID-CNE5>3.0.CO;2-H CrossRef
    9. Conti F, Zuccarello LV, Barbaresi P, Minelli A, Brecha NC, Melone M (1999) Neuronal, glial, and epithelial localization of gamma-aminobutyric acid transporter 2, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in the cerebral cortex and neighboring structures. J Comp Neurol 409(3):482-94. doi:10.1002/(SICI)1096-9861(19990705)409:3<482::AID-CNE11>3.0.CO;2-O CrossRef
    10. De Mello FG, Bachrach U, Nirenberg M (1976) Ornithine and glutamic acid decarboxylase activities in the developing chick retina. J Neurochem 27(4):847-51 CrossRef
    11. Dobolyi A, Ostergaard E, Bago AG, Doczi T, Palkovits M, Gal A et al (2013) Exclusive neuronal expression of SUCLA2 in the human brain. Brain Struct Funct. doi:10.1007/s00429-013-0643-2
    12. Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32(11):1884-890. doi:10.1007/s11064-007-9375-0 CrossRef
    13. Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG et al (2012) Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol 590(Pt 12):2845-871. doi:10.1113/jphysiol.2012.228387 CrossRef
    14. Guzman M, Blazquez C (2001) Is there an astrocyte-neuron ketone body shuttle? Trends Endocrin
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Biochemistry
    Animal Anatomy, Morphology and Histology
    Animal Biochemistry
    Organic Chemistry
  • 出版者:Springer New York
  • ISSN:1573-6881
文摘
We have recently shown that the ATP-forming SUCLA2 subunit of succinyl-CoA ligase, an enzyme of the citric acid cycle, is exclusively expressed in neurons of the human cerebral cortex; GFAP- and S100-positive astroglial cells did not exhibit immunohistoreactivity or in situ hybridization reactivity for either SUCLA2 or the GTP-forming SUCLG2. However, Western blotting of post mortem samples revealed a minor SUCLG2 immunoreactivity. In the present work we sought to identify the cell type(s) harboring SUCLG2 in paraformaldehyde-fixed, free-floating surgical human cortical tissue samples. Specificity of SUCLG2 antiserum was supported by co-localization with mitotracker orange staining of paraformaldehyde-fixed human fibroblast cultures, delineating the mitochondrial network. In human cortical tissue samples, microglia and oligodendroglia were identified by antibodies directed against Iba1 and myelin basic protein, respectively. Double immunofluorescence for SUCLG2 and Iba1 or myelin basic protein exhibited no co-staining; instead, SUCLG2 appeared to outline the cerebral microvasculature. In accordance to our previous work there was no co-localization of SUCLA2 immunoreactivity with either Iba1 or myelin basic protein. We conclude that SUCLG2 exist only in cells forming the vasculature or its contents in the human brain. The absence of SUCLA2 and SUCLG2 in human glia is in compliance with the presence of alternative pathways occurring in these cells, namely the GABA shunt and ketone body metabolism which do not require succinyl CoA ligase activity, and glutamate dehydrogenase 1, an enzyme exhibiting exquisite sensitivity to inhibition by GTP.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.