Unique performance of poly(p-phenylene terephthamide) hollow fiber membranes
详细信息    查看全文
  • 作者:Chun Wang ; Changfa Xiao ; Mingxing Chen ; Qinglin Huang…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:51
  • 期:3
  • 页码:1522-1531
  • 全文大小:2,264 KB
  • 参考文献:1.Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971. doi:10.​1039/​C0EE00541J CrossRef
    2.Maab H, Pereira Nunes S (2013) Porous polyoxadiazole membranes for harsh environment. J Membr Sci 445:127–134. doi:10.​1016/​j.​memsci.​2013.​05.​038 CrossRef
    3.Shukla JS, Dixit SK (1992) Synthesis of some new wholly aromatic heat resistant polyhydrazides as possible polymers for membranes (desalination). Eur Polym J 28(2):199–202. doi:10.​1016/​0014-3057(92)90308-O CrossRef
    4.Li W, Yang Z, Meng Q, Shen C, Zhang G (2014) Thermally stable and solvent resistant self-crosslinked TiO2/PAN hybrid hollow fiber membrane fabricated by mutual supporting method. J Membr Sci 467:253–261. doi:10.​1016/​j.​memsci.​2014.​05.​019 CrossRef
    5.Schulz B, Bruma M, Brehmer L (1997) Aromatic poly(1, 3, 4-oxadiazoe)s as advanced materials. Adv Mater 9(8):601–613. doi:10.​1002/​adma.​19970090804 CrossRef
    6.Soroko I, Lopes MP, Livingston A (2011) The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): part A. Effect of polymer/solvent/non-solvent system choice. J Membr Sci 381(1–2):152–162. doi:10.​1016/​j.​memsci.​2011.​07.​027 CrossRef
    7.Vanherck K, Vandezande P, Aldea SO, Vankelecom IFJ (2008) Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents. J Membr Sci 320(1–2):468–476. doi:10.​1016/​j.​memsci.​2008.​04.​026 CrossRef
    8.Li SFY, McGhie AJ, Tangt SL (1993) Internal structure of Kevlar fibres by atomic force microscopy. Polymer 34:4573–4575CrossRef
    9.Nakura K, Kamizawa C, Matsuda M, Masuda H (1992) Preparation of ultrafiltration membranes using poly(p-phenyleneterephthalamide) as a membrane material. Maku 17(2):78–84
    10.Zschocke P, Strathmann H (1980) Solvent resistant membranes from poly-(p-phenylene-terephthalamide). Desalination 34(1–2):69–75. doi:10.​1016/​S0011-9164(00)88581-1 CrossRef
    11.Wang C, Xiao C, Huang Q, Pan J (2015) A study on structure and properties of poly(p-phenylene terephthamide) hybrid porous membranes. J Membr Sci 474:132–139. doi:10.​1016/​j.​memsci.​2014.​09.​055 CrossRef
    12.Denchev Z, Dencheva N (2012) Manufacturing and properties of aramid reinforced composites. Hanser, Munich, pp 251–280. doi:10.​3139/​9781569905258.​008
    13.Chen W, Su Y, Zhang L, Shi Q, Peng J, Jiang Z (2010) In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes. J Membr Sci 348(1–2):75–83. doi:10.​1016/​j.​memsci.​2009.​10.​042 CrossRef
    14.Zhang X, Xiao C, Hu X, Jin X, Bai Q (2013) Study on the interfacial bonding state and fouling phenomena of polyvinylidene fluoride matrix-reinforced hollow fiber membranes during microfiltration. Desalination 330:49–60. doi:10.​1016/​j.​desal.​2013.​09.​022 CrossRef
    15.Boom RM, Wienk IM, van den Boomgaard T, Smolders CA (1992) Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J Membr Sci 73(2–3):277–292. doi:10.​1016/​0376-7388(92)80135-7 CrossRef
    16.Denchev Z, Dencheva N (2012) Preparation, mechanical properties and structural characterization of microfibrillar composites based on polyethylene/polyamide blends. Carl Hanser Verlag GmbH & Co, Munich, pp 465–524. doi:10.​3139/​9781569905258.​014
    17.Shi F, Ma Y, Ma J, Wang P, Sun W (2013) Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. J Membr Sci 427:259–269. doi:10.​1016/​j.​memsci.​2012.​10.​007 CrossRef
    18.Castro-Muñiz A, Martínez-Alonso A, Tascón JMD (2008) Modification of the pyrolysis/carbonization of PPTA polymer by intermediate isothermal treatments. Carbon 46(7):985–993. doi:10.​1016/​j.​carbon.​2008.​02.​004 CrossRef
    19.Martínez-Felipe A, Imrie CT, Ribes-Greus A (2013) Study of structure formation in side-chain liquid crystal copolymers by variable temperature fourier transform infrared spectroscopy. Ind Eng Chem Res 52(26):8714–8721. doi:10.​1021/​ie303130e CrossRef
    20.Sui Y, Wang Z, Gao X, Gao C (2012) Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations. J Membr Sci 413–414:38–47. doi:10.​1016/​j.​memsci.​2012.​03.​055 CrossRef
    21.Hyun J, Jang H, Kim K, Na K, Tak T (2006) Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains. J Membr Sci 282(1–2):52–59. doi:10.​1016/​j.​memsci.​2006.​05.​008 CrossRef
    22.Wang Z, Ma J, Tang CY, Kimura K, Wang Q, Han X (2014) Membrane cleaning in membrane bioreactors: a review. J Membr Sci 468:276–307. doi:10.​1016/​j.​memsci.​2014.​05.​060 CrossRef
    23.Teli SB, Molina S, Sotto A, Calvo EG, Abajob Jd (2013) Fouling resistant polysulfone–PANI/TiO2 ultrafiltration nanocomposite membranes. Ind Eng Chem Res 52(27):9470–9479. doi:10.​1021/​ie401037n CrossRef
    24.Wang Z, Wu Z, Yin X, Tian L (2008) Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: membrane foulant and gel layer characterization. J Membr Sci 325(1):238–244. doi:10.​1016/​j.​memsci.​2008.​07.​035 CrossRef
    25.Singh AK, Singh P, Mishra S, Shahi VK (2012) Anti-biofouling organic-inorganic hybrid membrane for water treatment. J Mater Chem 22(5):1834–1844. doi:10.​1039/​C1JM14250J CrossRef
    26.Lim AL, Bai R (2003) Membrane fouling and cleaning in microfiltration of activated sludge wastewater. J Membr Sci 216(1–2):279–290. doi:10.​1016/​S0376-7388(03)00083-8 CrossRef
    27.Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718. doi:10.​1002/​adma.​201001215 CrossRef
  • 作者单位:Chun Wang (1)
    Changfa Xiao (1)
    Mingxing Chen (1)
    Qinglin Huang (1)
    Hailiang Liu (1)
    Nana Li (1)

    1. State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Poly(p-phenylene terephthamide) (PPTA) hollow fiber membrane with outstanding thermal and chemical stability (endures above 60 °C and almost any organic solvents) has been fabricated by dry–wet spinning method for the first time. The heat and solvent resistance as well as anti-fouling performances was studied in this paper. The properties of thermal stability were characterized by pure water flux, mechanical strength, FTIR, and pore size distribution, and the properties of chemical resistance were characterized by organic solvent flux. The results showed that PPTA hollow fiber membrane was a kind of inner and outer dual-skin layer structure. The flux was stable in hot water and organic solvents, which indicated that the membrane structure hardly changed. The average pore size was slightly increased during high-temperature experiment. Moreover, the properties of anti-fouling were characterized by simulated activated sludge filtration. The fouled PPTA membranes were cleaned by ultrasonic, citric acid, and alkali treatments, and the membrane surface was detected by energy-dispersive X-ray spectroscopy. The results showed that the effect of the citric acid treatment was more preferable to the other ways, which indicated that the inorganic substance was easily adsorbed on the membrane surface compared with organic substance. Therefore, PPTA hollow fiber membrane exhibited the excellent anti-fouling performance by the reason of strong hydrophilicity and electronegativity.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.