An iterative algorithm for third-order tensor multi-rank minimization
详细信息    查看全文
  • 作者:Lei Yang ; Zheng-Hai Huang ; Shenglong Hu…
  • 关键词:Third ; order tensor multi ; rank minimization ; Tensor completion ; Matrix rank minimization ; Operator splitting ; Convex relaxation
  • 刊名:Computational Optimization and Applications
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:63
  • 期:1
  • 页码:169-202
  • 全文大小:1,450 KB
  • 参考文献:1.Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming, 3rd edn. Wiley, New York (2006)MATH CrossRef
    2.Berry, M.W.: Large-scale sparse singular value decompositions. Int. J. Supercomput. Appl. 6(1), 13–49 (1992)
    3.Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image Inpainting. Proceedings of SIGGRAPH, New Orleans (2000)CrossRef
    4.Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433(7), 1241–1253 (2010)MATH MathSciNet CrossRef
    5.Cai, J.F., Candès, E.J., Shen, Z.W.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)MATH MathSciNet CrossRef
    6.Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)MATH MathSciNet CrossRef
    7.Comon, P., et al.: Tensor decompositions: state of the art and applications. In: McWhirter, J., Proudler, I. (eds.) Mathematics in Signal Processing V, pp. 1–24. Oxford University Press, Oxford (2001)
    8.Drineas, P., Kannan, R., Mahoney, M.W.: Fast monte carlo algorithms for matrices II: computing low-rank approximations to a matrix. SIAM J. Comput. 36(1), 158–183 (2006)MATH MathSciNet CrossRef
    9.Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. Proceedings of the American Control Conference. (Arlington, VA, June 2001), 6, 4734–4739 (2001)
    10.Fazel, M.: Matrix rank minimization with applications. PhD thesis, Stanford University (2002)
    11.Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-\(n\) -rank tensor recovery via convex optimization. Inv.UD Probl. 27, 025010 (19pp) (2011)
    12.Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)MATH
    13.Hale, E.T., Yin, W.T., Zhang, Y.: A fixed-point continuation method for \(l_1\) -regularized minimization with applications to compressed sensing. SIAM J. Optim. 19(3), 1107–1130 (2008)MATH MathSciNet CrossRef
    14.Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor–tensor decomposition. SIAM J. Imaging Sci. 6(1), 437–463 (2013)MATH MathSciNet CrossRef
    15.Håstad, J.: Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990)MATH MathSciNet CrossRef
    16.Kilmer, M.E., Martin, C.D., Perrone, L.: A third-order generalization of the matrix SVD as a product of third-order tensors. Technical Report TR-2008-4, Department of Computer Science, Tufts University, Medford, MA (2008)
    17.Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)MATH MathSciNet CrossRef
    18.Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)MATH MathSciNet CrossRef
    19.Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MATH MathSciNet CrossRef
    20.Komodakis, N.: Image completion using global optimization. CVPR 1, 442–452 (2006)
    21.Korah, T., Rasmussen, C.: Spatiotemporal inpainting for recovering texture maps of occluded building facades. IEEE Trans. Image Process. 16(9), 2262–2271 (2007)MathSciNet CrossRef
    22.Kroonenberg, P.: Three-Mode Principal Component Analysis: Theory and Applications. DSWO Press, Leiden (1983)
    23.Larsen, R.M.: PROPACK-software for large and sparse svd calculations available at http://​sun.​stanford.​edu/​srmunk/​PROPACK/​
    24.Lathauwer, LDe, Moor, B.D.: From matrix to tensor: multilinear algebra and signal processing. In: McWhirter, J., Proudler, E.I. (eds.) Mathematics in Signal Processing IV, pp. 1–15. Clarendon Press, Oxford (1998)
    25.Liu, J., Musialski, P., Wonka, P., Ye, J.P.: Tensor completion for estimating missing values in visual data. IEEE Int. Conf. Computer Vision (ICCV), Kyoto, Japan, pp. 2114–2121 (2009)
    26.Ma, S.Q., Goldfarb, D., Chen, L.F.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. 128(1–2), 321–353 (2011)MATH MathSciNet CrossRef
    27.Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)MATH MathSciNet CrossRef
    28.Recht, B.: A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413–3430 (2011)MATH MathSciNet
    29.Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)MATH CrossRef
    30.Semerci, O., Hao, N., Kilmer, M.E., Miller, E.L.: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans. Image Process. 23(4), 1678–1693 (2014)MathSciNet CrossRef
    31.Signoretto, M., Lathauwer L.De., Suykens J.A.K.: Nuclear norms for tensors and their use for convex multilinear estimation, Preprint, submitted to Linear Algebra Appl., September (2010)
    32.Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. Wiley, New York (2004)CrossRef
    33.Toh, K.C., Yun, S.W.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6, 615–640 (2010)MATH MathSciNet
    34.Tomioka, R., Hayashi, K., Kashima, H.: Estimation of low-rank tensors via convex optimization (2011). arXiv:​1010.​0789v2
    35.Tseng, P.: Convergence of block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)MATH MathSciNet CrossRef
    36.Watson, G.A.: Characterization of the subdifferential of some matrix norms. Linear Algebra Appl. 170(1), 33–45 (1992)MATH MathSciNet CrossRef
    37.Zhang, Z.M., Ely, G., Aeron, S., Hao, N., Kilmer, M.E.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2014)
  • 作者单位:Lei Yang (1)
    Zheng-Hai Huang (1) (2)
    Shenglong Hu (1)
    Jiye Han (3)

    1. Department of Mathematics, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
    2. Center for Applied Mathematics of Tianjin University, Tianjin, People’s Republic of China
    3. Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Optimization
    Operations Research and Mathematical Programming
    Operation Research and Decision Theory
    Statistics
    Convex and Discrete Geometry
  • 出版者:Springer Netherlands
  • ISSN:1573-2894
文摘
Recent work by Kilmer et al. (A third-order generalization of the matrix SVD as a product of third-order tensors, Department of Computer Science, Tufts University, Medford, MA, 2008; Linear Algebra Appl 435(3):641–658, 2011; SIAM J Matrix Anal Appl 34(1):148–172, 2013), and Braman (Linear Algebra Appl 433(7):1241–1253, 2010) on tensor–tensor multiplication opens up a new avenue to study third-order tensors. Based on this new tensor–tensor multiplication and related concepts, some familiar tools of linear algebra can be extended to study third-order tensors. Motivated by this process, in this paper, we consider the multi-rank of a tensor as a sparsity measure and propose a new model, called third-order tensor multi-rank minimization, as an extension of matrix rank minimization. The operator splitting technique and the convex relaxation technique are used to tackle this problem. Based on these two powerful techniques, we propose a simple first-order and easy-to-implement algorithm to solve this problem. The proposed algorithm is shown to be globally convergent under some assumptions. The continuation technique is also applied to improve the numerical performance of the algorithm. Some preliminary numerical results demonstrate the efficiency of the proposed algorithm, and the potential value and applications of the multi-rank and the tensor multi-rank minimization model.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.