Modeling of P-蟻-T properties of ionic liquids using ISM equation of state: Application to pure component and binary mixtures
详细信息    查看全文
  • 作者:Mohammad Mehdi Papari (1)
    Sayed Mostafa Hosseini (2)
    Fatemeh Fadaei-Nobandegani (2)
    Jalil Moghadasi (2)
  • 关键词:Equation of State ; Ionic Liquid ; Binary Mixture
  • 刊名:Korean Journal of Chemical Engineering
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:29
  • 期:11
  • 页码:1628-1637
  • 全文大小:319KB
  • 参考文献:1. B. Garcia, S. Lavallee, G. Perron, C. Michot and M. Armand, / Electrochim. Acta, 49, 4583 (2004). CrossRef
    2. T. Sato, G. Masuda and K. Takagi, / Electrochim. Acta, 49, 3603 (2004). CrossRef
    3. M. J. Earle and K. R. Seddon, / Pure. Appl. Chem., 72, 1391 (2000). CrossRef
    4. B. Wu, R.G. Reddy and R. D. Rogers, / Proceedings of Solar Forum, 2001, Solar Energy: The Power to Choose, April 21鈥?5, ASME, Washington, DC (2001).
    5. J. Wang, Z. Li, C. Li and Z. Wang, / Ind. Eng. Chem. Res., 49, 4420 (2010). CrossRef
    6. C. Shen, C. Li, X. Li, Y. Lu and Y. Muhammad, / Chem. Eng. Sci., 66, 2690 (2011). CrossRef
    7. H. Machida, Y. Sato and R. L. Smith Jr., / Fluid Phase Equilib., 297, 205 (2010). CrossRef
    8. J. Abildskov, M. D. Ellegaard and J. P. O鈥機onnell, / Fluid Phase Equilib., 286, 95 (2009). CrossRef
    9. J. Abildskov, M. D. Ellegaard and J. P. O鈥機onnell, / Fluid Phase Equilib., 295, 215 (2010). CrossRef
    10. J. Abildskov, M. D. Ellegaard and J. P. O鈥機onnell, / J. Supercrit. Fluid, 55, 833 (2010). CrossRef
    11. J. Palomar, V.R. Ferro, J. S. Torrecilla and F. Rodriguez, / Ind. Eng. Chem. Res., 46, 6041 (2007). CrossRef
    12. S. Trohalaki, R. Pachter, G. Drake and T. Hawkins, / Energy Fuels, 19, 279 (2005). CrossRef
    13. J. O. Valderama, A. Reategui and R. E. Rojas, / Ind. Eng. Chem. Res., 48, 3254 (2009). CrossRef
    14. S. Aparicio, M. Atilhan and F. Karadas, / Ind. Eng. Chem. Res., 49, 9580 (2010). CrossRef
    15. Y. S. Kim, W.Y. Choi, J. H. Jang, K.-P. Yoo and C. S. Lee, / Fluid Phase Equilib., 228鈥?29, 439 (2005). CrossRef
    16. Y. Song and E. A. Mason, / J. Chem. Phys., 91, 7840 (1989). CrossRef
    17. S.M. Hosseini and Z. Sharafi, / Ionics, 17, 511 (2011). CrossRef
    18. S.M. Hosseini, J. Moghadasi, M.M. Papari and F. Fadaie-Nobandegani, / Ind. Eng. Chem. Res., 51, 758 (2012). CrossRef
    19. S.M. Hosseini, / Ionics, 16, 571 (2010). CrossRef
    20. S.M. Hosseini, J. Moghadasi and M.M. Papari, / Ionics, 16, 757 (2010). CrossRef
    21. S.M. Hosseini, J. Moghadasi, M.M. Papari and F. Fadaie-Nobandegani, / J. Mol. Liq., 160, 67 (2011). CrossRef
    22. J. O. Valderrama and P. A. Robles, / Ind. Eng. Chem. Res., 46, 1338 (2007). CrossRef
    23. J.O. Valderrama and R. E. Rojas, / Ind. Eng. Chem. Res., 48, 6890 (2009). CrossRef
    24. R. L. Gardas and J. A. P. Coutinho, / Fluid Phase Equilib., 263, 26 (2008). CrossRef
    25. J. Jacquemin, P. Nancarrow, D.W. Rooney, M. F. Costa Gomes, P. Husson, V. Majer, A. A. H. Padua and C. Hardacre, / J. Chem. Eng. Data, 53, 2133 (2008). CrossRef
    26. J. Jacquemin, G. Rile, P. Nancarrow, D.W. Rooney, M. F. Costa Gomes, A. A.H. Padua and C. Hardacre, / J. Chem. Eng. Data, 53, 716 (2008). CrossRef
    27. C. Ye and J.M. Shreeve, / J. Phys. Chem. A, 111, 1456 (2007). CrossRef
    28. F.M. Tao and E. A. Mason, / Int. J. Thermophys., 13, 1053 (1992). CrossRef
    29. A. Boushehri and E. A. Mason, / Int. J. Thermophys., 14, 685 (1993). CrossRef
    30. M. H. Ghatee and A. Boushehri, / Int. J. Thermophys., 17, 945 (1996). CrossRef
    31. N. Mehdipour and A. Boushehri, / Int. J. Thermophys., 19, 331 (1998). CrossRef
    32. H. Eslami, / Int. J. Thermophys., 21, 1123 (2000). CrossRef
    33. S. Sheikh, M.M. Papari and A. Boushehri, / Ind. Eng. Chem. Res., 41, 3274 (2002). CrossRef
    34. M.M. Papari, A. Razavizadeh, F. Mokhberi and A. Boushehri, / Ind. Eng. Chem. Res., 4, 3802 (2003). CrossRef
    35. Y. Song, / J. Chem. Phys., 92, 2683 (1990). CrossRef
    36. S. P. Verevkin, / Angew. Chem. Int. Ed., 47, 5071 (2008). CrossRef
    37. F. A. M.M. Goncalves, C. S. M. F. Costa, C. E. Ferreira, J. C. S. Bernardo, I. Johnson, I.M. A. Fonseca and A. G.M. Ferreira, / J. Chem. Thermodyn., 43, 914 (2011). CrossRef
    38. R. Gomes de Azevedo, J. M. S. S. Esperanca, J. Szydlowski, Z. P. Visak, P. F. Pires, H. J. R. Guedes and L. P. N. Rebelo, / J. Chem. Thermodyn., 37, 888 (2005). CrossRef
    39. R. L. Gardas, M.G. Freire, P. J. Carvalho, I.M. Marrucho, I. M. A. Fonseca, A. G.M. Ferreira and J. A. P. Coutinho, / J. Chem. Eng. Data, 52, 1881 (2007). CrossRef
    40. J.M. S. S. Esperanca, Z. P. Visak, N.V. Plechkova, K. R. Seddon, H. J. R. Guedes and L. P.N. Rebelo, / J. Chem. Eng. Data, 51, 2009 (2006). CrossRef
    41. J.M. S. S. Esperan莽a, H. J. R. Guedes, J. N. C. Lopes and L. P. N. Rebelo, / J. Chem. Eng. Data, 53, 867(2008). CrossRef
    42. R. L. Gardas, H. F. Costa, M.G. Freire, P. J. Carvalho, I. M. Marrucho, I. M. A. Fonseca, A.G.M. Ferreira and J. A. P. Coutinho, / J. Chem. Eng. Data, 53, 805 (2008). CrossRef
    43. J. M. S. S. Esperanca, H. J. R. Guedes, M. Blesic and L. P. N. Rebelo, / J. Chem. Eng. Data, 51, 237 (2006). CrossRef
    44. R. L. Gardas, M.G. Freire, P. J. Carvalho, I.M. Marrucho, I. M. A. Fonseca, A. G.M. Ferreira and J. A. P. Coutinho, / J. Chem. Eng. Data, 52, 80 (2007). CrossRef
    45. R. Taguchi, H. Machida, Y. Sato and R. L. Smith Jr., / J. Chem. Eng. Data, 54, 22 (2009). CrossRef
    46. L. I.N. Tome, P. J. Carvalho, M.G. Freire, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J. A. P. Coutinho and R. L. Gardas, / J. Chem. Eng. Data, 53, 1914 (2008). CrossRef
    47. H. Machida, Y. Sato and R. L. Smith Jr., / Fluid Phase Equilib., 264, 147 (2008). CrossRef
    48. Q. Zhou, L. S. Wang and H. P. Chen, / J. Chem. Eng. Data, 51, 905 (2006). CrossRef
    49. R.G. Azevedo, J. M. S. S. Esperanca, V. Najdanovic-Visak, Z. P. Visak, H. J. R. Guedes, M. N. Ponte and L. P. N. Rebelo, / J. Chem. Eng. Data, 50, 997 (2005). CrossRef
    50. D. Tomida, A. Kumagai, K. Qiao and C. Yokoyama, / Int. J. Thermophys., 27, 39 (2006). CrossRef
    51. J. Jacquemin, P. Husson, V. Mayer and I. Cibulka, / J. Chem. Eng. Data, 52, 2204 (2007). CrossRef
    52. T. Hofman, A. Goldon, A. Nevines and T. M. Letcher, / J. Chem. Thermodyn., 40, 580 (2008). CrossRef
    53. S. Zhang, X. Li, H. Chen, J. Wang, J. Zhang and M. Zhang, / J. Chem. Eng. Data, 49, 760 (2004). CrossRef
    54. M. L. Ge, R. S. Zhao, Y. F. Yi, Q. Zhang and L. S. Wang, / J. Chem. Eng. Data, 53, 2408 (2008). CrossRef
    55. P. J. Carvalho, T. Regueira, L. M. N. B. F. Santos, J. Fernandez and J. A. P. Coutinho, / J. Chem. Eng. Data, 55, 645 (2010). CrossRef
    56. P. Navia, J. Troncoso and L. Romani, / J. Chem. Eng. Data, 52, 1369 (2007). CrossRef
    57. J. N. C. Lopes, T. C. Cordeiro, J. M. S. S. Esperanca, H. J. R. Guedes, S. Huq, L. P. N. Rebelo and K. R. Seddon, / J. Phys. Chem. B, 10, 3519 (2005). CrossRef
  • 作者单位:Mohammad Mehdi Papari (1)
    Sayed Mostafa Hosseini (2)
    Fatemeh Fadaei-Nobandegani (2)
    Jalil Moghadasi (2)

    1. Department of Chemistry, Shiraz University of Technology, Shiraz, 71555-313, Iran
    2. Department of Chemistry, Shiraz University, Shiraz, 71454, Iran
  • ISSN:1975-7220
文摘
Ihm-Song-Mason (ISM) equation of state (EOS) has been previously employed for modeling the volumetric properties of ionic liquids (ILs). The novelty of the present work is in replacing the macroscopic scaling constants with microscopic ones. Three temperature-dependent parameters that appeared in the EOS, which are universal functions of the reduced temperature, were determined using these new microscopic scaling constants. These parameters are the effective hard-sphere diameter (蟽) and the non-bonded interaction energy between two spheres (). The present EOS is evaluated by examination of 3997 experimental density data points for five classes of ILs. The average absolute deviation (AAD) of the calculated densities from literature values was found to be of the order of 0.38%. Our calculations involved a broad range of temperature from 293 K to 472 K and pressures from 0.1MPa up to 200MPa. Another aspect of the present study is the extension of the proposed EOS to predict density of binary mixtures involving IL+ water and IL+ IL. In the case of binary mixtures, 898 data points were taken to assess the capability of the EOS. The overall AAD of the calculated mixture densities from the literature ones was within 0.43%.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.