Dissecting the regional diversity of glial cells by applying -omic technologies
详细信息    查看全文
  • 作者:Daniela C. Dieterich ; Moritz J. Rossner
  • 关键词:Glial cell types ; Brain ; Transcriptomics ; Proteomics ; Cell isolation
  • 刊名:e-Neuroforum
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:6
  • 期:3
  • 页码:63-68
  • 全文大小:652 KB
  • 参考文献:1.Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542-48CrossRef PubMed
    2.Biesemann C, Gr?nborg M, Luquet E, Wichert SP, Bernard V, Bungers SR, Cooper B, Varoqueaux F, Li L, Byrne JA et al (2014) Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 33:157-70PubMed Central CrossRef PubMed
    3.Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264-78CrossRef PubMed
    4.Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311-21PubMed Central CrossRef PubMed
    5.Dieterich DC, Hodas JJL, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13:897-05PubMed Central CrossRef PubMed
    6.Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749-62PubMed Central CrossRef PubMed
    7.Erdmann I, Marter K, Kobler O, Niehues S, Abele J, Müller A, Bussmann J, Storkebaum E, Ziv T, Thomas U et al (2015) Cell-selective labeling of proteomes in Drosophila melanogaster. Nat Commun doi:10.-038/?ncomms8521
    8.Geschwind DH, Konopka G (2009) Neuroscience in the era of functional genomics and systems biology. Nature 461:908-15PubMed Central CrossRef PubMed
    9.Gopalakrishnan G, Awasthi A, Belkaid W, De Faria O, Liazoghli D, Colman DR, Dhaunchak AS (2013) Lipidome and proteome map of myelin membranes. J Neurosci Res 91:321-34CrossRef PubMed
    10.Han D, Jin J, Woo J, Min H, Kim Y (2014) Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation. Proteomics 14:1604-609CrossRef PubMed
    11.Hodas JJL, Nehring A, H?che N, Sweredoski MJ, Pielot R, Hess S, Tirrell DA, Dieterich DC, Schuman EM (2012) Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT). Proteomics 12:2464-476PubMed Central CrossRef PubMed
    12.Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA, Kirchhoff F, Verkhratsky A (2008) P2?×- and P2?×- subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 28:5473-480PubMed Central CrossRef PubMed
    13.Lobsiger CS, Boillée S, Cleveland DW (2007) Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proc Natl Acad Sci U S A 104:7319-326PubMed Central CrossRef PubMed
    14.Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH-C, Han X, Takano T, Wang S, Sim FJ et al (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255-2266CrossRef PubMed
    15.Malatesta P, Hartfuss E, G?tz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253-263PubMed
    16.Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837-46CrossRef PubMed
    17.Pielot R, Smalla K-H, Müller A, Landgraf P, Lehmann A-C, Eisenschmidt E, Haus U-U, Weismantel R, Gundelfinger ED, Dieterich DC (2012) SynProt: a database for proteins of detergent-resistant synaptic protein preparations. Front Synaptic Neurosci 4:1PubMed Central CrossRef PubMed
    18.Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13:528-41PubMed Central CrossRef PubMed
    19.Rossner MJ, Hirrlinger J, Wichert SP, Boehm C, Newrzella D, Hiemisch H, Eisenhardt G, Stuenkel C, von Ahsen O, Nave K-A (2006) Global transcriptome analysis of genetically identified neurons in the adult cortex. J Neurosci 26:9956-966CrossRef PubMed
    20.Schnell C, Shahmoradi A, Wichert SP, Mayerl S, Hagos Y, Heuer H, Rossner MJ, Hülsmann S (2015). The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes. Brain Struct Funct 220:193-03. doi: 10.1007/s00429-013-0645-0PubMed Central CrossRef PubMed
    21.Skorupa A, Urbach S, Vigy O, King MA, Chaumont-Dubel S, Prehn JHM, Marin P (2013) Angiogenin induces modifications in the astrocyte secretome: relevance to amyotrophic lateral sclerosis. J Proteomics 91:274-85CrossRef PubMed
    22.Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57-3PubMed Central CrossRef PubMed
  • 作者单位:Daniela C. Dieterich (1) (2) (3)
    Moritz J. Rossner (4)

    1. Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
    2. Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
    3. Center for Behavioral Brain Sciences, Magdeburg, Germany
    4. Laboratory of Molecular and Behavioral Neurobiology, Department of Psychiatry, Nussbaumstr. 7, 80336, Munich, Germany
  • 刊物主题:Neurosciences; Neurobiology; Life Sciences, general; Biomedicine general; Neurochemistry; Neurology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1868-856X
文摘
Neuronal as well as glial cells contribute to higher order brain functions. Many observations show that neurons and glial cells are not only physically highly intermingled but are physiologically tightly connected and mutually depend at various levels on each other. Moreover, macroglia classes like astrocytes, NG2 cells and oligodendrocytes are not at all homogenous cell populations but do possess a markedly heterogeneity in various aspects similar to neurons. The diversity of differences in morphology, functionality and, cellular activity has been acknowledged recently and will be integrated into a concept of brain function that pictures a neural rather than a puristical neuronal world. With the recent progress in “omic-technologies, an unbiased and exploratory approach toward an enhanced understanding of glial heterogeneity has become possible. Here, we provide an overview on current technical transcriptomic and proteomic approaches used to dissect glial heterogeneity of the brain. Keywords Glial cell types Brain Transcriptomics Proteomics Cell isolation
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.