A data-adaptive strategy for inverse weighted estimation of causal effects
详细信息    查看全文
  • 作者:Yeying Zhu (1)
    Debashis Ghosh (2)
    Nandita Mitra (3)
    Bhramar Mukherjee (4)
  • 关键词:Boosting algorithms ; Causal inference ; Logistic regression ; Observational data ; Random forests
  • 刊名:Health Services and Outcomes Research Methodology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:14
  • 期:3
  • 页码:69-91
  • 全文大小:371 KB
  • 参考文献:1. Biau, G., Devroye, L., Lugosi, G.: Consistency of random forests and other averaging classifiers. J. Mach. Learn. Res. 9, 2015鈥?033 (2008)
    2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123鈥?40 (1996)
    3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5鈥?2 (2001) CrossRef
    4. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. Chapman & Hall/CRC, Boca Raton (1984)
    5. Brookhart, M.A., van der Laan, M.J.: A semiparametric model selection criterion with applications to the marginal structural model. Comput. Stat. Data Anal. 50(2), 475鈥?98 (2006) CrossRef
    6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273鈥?97 (1995)
    7. Freund, Y., Schapire, R.: A desicion-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119鈥?39 (1997) CrossRef
    8. Hainmueller, J.: Entropy balancing for causal effects: a multivariate reweighting method to produce balanced samples in observational studies. Political Anal. 20(1), 25鈥?6 (2012) CrossRef
    9. Harder, V.S., Stuart, E.A., Anthony, J.C.: Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research. Psychol. Methods 15(3), 234鈥?49 (2010) CrossRef
    10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009) CrossRef
    11. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Stat. Sci. 14(4), 382鈥?01 (1999) CrossRef
    12. Imai, K., Ratkovic, M.: Covariate balancing propensity score. J. R. Stat. Soc.: Ser. B (Statistical Methodology) 76(1), 243鈥?63 (2014) CrossRef
    13. Imai, K., Van Dyk, D.: Causal inference with general treatment regimes. J. Am. Stat. Assoc. 99(467), 854鈥?66 (2004) CrossRef
    14. Kang, J.D.Y., Schafer, J.L.: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat. Sci. 22(4), 523鈥?39 (2007) CrossRef
    15. Kouassi, D.A., Singh, J.: A semiparametric approach to hazard estimation with randomly censored observations. J. Am. Stat. Assoc. 92(440), 1351鈥?355 (1997) CrossRef
    16. Lee, B.K., Lessler, J., Stuart, E.A.: Improving propensity score weighting using machine learning. Stat. Med. 29(3), 337鈥?46 (2010)
    17. Lin, D., Psaty, B., Kronmal, R.: Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics 54(3), 948鈥?63 (1998) CrossRef
    18. Lunceford, J.K., Davidian, M.: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat. Med. 23(19), 2937鈥?960 (2004) CrossRef
    19. Mays, J.E., Birch, J.B., Starnes, B.A.: Model robust regression: combining parametric, nonparametric, and semiparametric methods. J. Nonparametric Stat. 13(2), 245鈥?77 (2001) CrossRef
    20. McCaffrey, D.F., Griffin, B.A., Almirall, D., Slaughter, M.E., Ramchand, R., Burgette, L.F.: A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat. Med. 32(19), 3388鈥?414 (2013) CrossRef
    21. McCaffrey, D.F., Ridgeway, G., Morral, A.R.: Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol. Methods 9(4), 403鈥?25 (2004) CrossRef
    22. Mitra, N., Heitjan, D.F.: Sensitivity of the hazard ratio to nonignorable treatment assignment in an observational study. Stat. Med. 26(6), 1398鈥?414 (2007) CrossRef
    23. Nottingham, Q.J., Birch, J.B.: A semiparametric approach to analysing dose-response data. Stat. Med. 19(3), 389鈥?04 (2000) CrossRef
    24. Olkin, I., Spiegelman, C.H.: A semiparametric approach to density estimation. J. Am. Stat. Assoc. 82(399), 858鈥?65 (1987) CrossRef
    25. Pregibon, D.: Resistant fits for some commonly used logistic models with medical applications. Biometrics 38, 485鈥?98 (1982) CrossRef
    26. Ridgeway, G.: The state of boosting. Comput. Sci. Stat. 31, 172鈥?81 (1999)
    27. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41鈥?5 (1983) CrossRef
    28. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66(5), 688鈥?01 (1974) CrossRef
    29. Setoguchi, S., Schneeweiss, S., Brookhart, M.A., Glynn, R.J., Cook, E.F.: Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiol. Drug Saf. 17(6), 546鈥?55 (2008) CrossRef
    30. Shinohara, E.T., Mitra, N., Guo, M., Metz, J.M.: Radiation therapy is associated with improved survival in the adjuvant and definitive treatment of intrahepatic cholangiocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 72(5), 1495鈥?501 (2008) CrossRef
    31. Stefanski, L.A., Boos, D.D.: The calculus of m-estimation. Am. Stat. 56(1), 29鈥?8 (2002) CrossRef
    32. Tchernis, R., Horvitz-Lennon, M., Normand, S.L.T.: On the use of discrete choice models for causal inference. Stat. Med. 24(14), 2197鈥?212 (2005) CrossRef
    33. van der Laan, M.J., Polley, E.C., Hubbard, A.E.: Super learner. Stat. Appl. Genet. Mol. Biol. 6(1), 1鈥?1 (2007)
    34. van der Laan, M.J., Rose, S.: Targeted Learning: Causal Inference for Observational and Experimental Data. Springer, New York (2011) CrossRef
    35. White, H.: Maximum likelihood estimation of misspecified models. Econometrica 50(1), 1鈥?5 (1982) CrossRef
    36. Yang, Y.: Adaptive regression by mixing. J. Am. Stat. Assoc. 96(454), 574鈥?88 (2001) CrossRef
    37. Yuan, Z., Ghosh, D.: Combining multiple biomarker models in logistic regression. Biometrics 64(2), 431鈥?39 (2008) CrossRef
    38. Yuan, Z., Yang, Y.: Combining linear regression models. J. Am. Stat. Assoc. 100(472), 1202鈥?214 (2005) CrossRef
    39. Zhang, T., Yu, B.: Boosting with early stopping: convergence and consistency. Ann. Stat. 33(4), 1538鈥?579 (2005) CrossRef
  • 作者单位:Yeying Zhu (1)
    Debashis Ghosh (2)
    Nandita Mitra (3)
    Bhramar Mukherjee (4)

    1. Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
    2. Department of Statistics, Pennsylvania State University, University Park, PA, 16802, USA
    3. Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
    4. Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
  • ISSN:1572-9400
文摘
In most nonrandomized observational studies, differences between treatment groups may arise not only due to the treatment but also because of the effect of confounders. Therefore, causal inference regarding the treatment effect is not as straightforward as in a randomized trial. To adjust for confounding due to measured covariates, the average treatment effect is often estimated by using propensity scores. Typically, propensity scores are estimated by logistic regression. More recent suggestions have been to employ nonparametric classification algorithms from machine learning. In this article, we propose a weighted estimator combining parametric and nonparametric models. Some theoretical results regarding consistency of the procedure are given. Simulation studies are used to assess the performance of the newly proposed methods relative to existing methods, and a data analysis example from the Surveillance, Epidemiology and End Results database is presented.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.