(E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry
详细信息    查看全文
  • 作者:Sheng Wang ; Zhaohui Xiao ; Chunsheng Xiao…
  • 关键词:MALDI ; TOF MS ; Esterified α ; cyano ; 4 ; hydroxycinnamic acid ; Proteins ; Sensitivity ; Salt ; tolerance
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:27
  • 期:4
  • 页码:709-718
  • 全文大小:974 KB
  • 参考文献:1.Karas, M., Bahr, U., Giessmann, U.: Matrix-assisted laser desorption ionization mass spectrometry. Mass Spectrom. Rev. 10, 335–357 (1991)CrossRef
    2.Fenn, J.B., Mann, M., Meng, C.K.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989)CrossRef
    3.Angel, T.E., Aryal, U.K., Hengel, S.M.: Mass spectrometry-based proteomics: existing capabilities and future directions. Chem. Soc. Rev. 41, 3912–3928 (2012)CrossRef
    4.Albalat, A., Husi, H., Stalmach, A., Schanstra, J.P., Mischak, H.: Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis 6, 247–266 (2014)CrossRef
    5.Hortin, G.L.: The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome. Clin. Chem. 52, 1223–1237 (2006)CrossRef
    6.Van Swelm, R.P.L., Laarakkers, C.M.M., Kooijmans-Otero, M.: Biomarkers for methotrexate-induced liver injury: urinary protein profiling of psoriasis patients. Toxicol. Lett. 221, 219–224 (2013)CrossRef
    7.Greco, V., Pieragostino, D., Piras, C.: Direct analytical sample quality assessment for biomarker investigation: qualifying cerebrospinal fluid samples. Proteomics 14, 1954–1962 (2014)CrossRef
    8.Meding, S., Nitsche, U., Balluff, B.: Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J. Proteome Res. 11, 1996–2003 (2012)CrossRef
    9.Sandrin, T.R., Goldstein, J.E., Schumaker, S.: MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom. Rev. 32, 188–217 (2013)CrossRef
    10.Croxatto, A., Prod'hom, G., Greub, G.: Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 36, 380–407 (2012)CrossRef
    11.Herrero, M., Simó, C., García-Cañas, V.: Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom. Rev. 31, 49–69 (2012)CrossRef
    12.Acquadro, E., Caron, I., Tortarolo, M.: Human SOD1-G93A specific distribution evidenced in murine brain of a transgenic model for amyotrophic lateral sclerosis by MALDI imaging mass spectrometry. J. Proteome Res. 13, 1800–1809 (2014)CrossRef
    13.Mcdonnell, L.A., Heeren, R.M.: Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007)CrossRef
    14.Gessel, M.M., Norris, J.L., Caprioli, R.M.: MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J. Proteomics. 107, 71–82 (2014)CrossRef
    15.Zhang, Y., Li, L., Yang, P.: On-plate enrichment methods for MALDI-MS analysis in proteomics. Anal. Method. 4, 2622–2631 (2012)CrossRef
    16.Sun, P., Armstrong, D.W.: Ionic liquids in analytical chemistry. Anal. Chim. Acta 661, 1–16 (2010)CrossRef
    17.Kobayashi, T., Kawai, H., Suzuki, T.: Improved sensitivity for insulin in matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry by premixing α‐cyano‐4‐hydroxycinnamic acid matrix with transferring. Rapid Commun. Mass Spectrom. 18, 1156–1160 (2004)CrossRef
    18.Gusev, A.I., Wilkinson, W.R., Proctor, A.: Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal. Chem. 67, 1034–1041 (1995)CrossRef
    19.Jaskolla, T.W., Karas, M., Roth, U., Steinert, K., Menzel, C., Reihs, K.: Comparison between vacuum sublimed matrices and conventional dried droplet preparation in MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 1104–1114 (2009)CrossRef
    20.Tu, T., Sauter, A.D., Gross, M.L.: Improving the signal intensity and sensitivity of MALDI mass spectrometry by using nanoliter spots deposited by induction-based fluidics. J. Am. Soc. Mass Spectrom. 19, 1086–1090 (2008)CrossRef
    21.Bagshaw, R.D., Callahan, J.W., Mahuran, D.J.: Desalting of in-gel-digested protein sample with mini-C18 columns for matrix-assisted laser desorption ionization time of flight peptide mass fingerprinting. Anal. Biochem. 284, 432–435 (2000)CrossRef
    22.Jia, W., Chen, X., Lu, H., Yang, P.: CaCO3-poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI-TOF MS analysis. Angew. Chem. Int. Ed. 45, 3345–3349 (2006)CrossRef
    23.Yuan, X.L., Desiderio, D.M.: Protein identification with Teflon as matrix-assisted laser desorption/ionization sample support. J. Mass Spectrom. 37, 512–524 (2002)CrossRef
    24.Tannu, N.S., Wu, J., Rao, V.K., Gadgil, H.S., Pabst, M.J., Gerling, I.C., Raghow, R.: Paraffin-wax-coated plates as matrix-assisted laser desorption/ionization sample support for high-throughput identification of proteins by peptide mass fingerprinting. Anal. Biochem. 327, 222–232 (2004)CrossRef
    25.Zeng, Z., Wang, Y., Shi, S., Wang, L., Guo, X., Lu, N.: On-plate selective enrichment and self-desalting of peptides/proteins for direct MALDI MS analysis. Anal. Chem. 84, 2118–2123 (2012)CrossRef
    26.Zeng, Z., Wang, Y., Guo, X.: On-plate glycoproteins/glycopeptides selective enrichment and purification based on surface pattern for direct MALDI MS analysis. Analyst 138, 3032–3037 (2013)CrossRef
    27.Fenselau, C.: MALDI MS and strategies for protein analysis. Anal. Chem. 69, 661–665 (1997)CrossRef
    28.Knochenmuss, R., Zenobi, R.: MALDI ionization: the role of in-plume processes. Chem. Rev. 103, 441–452 (2003)CrossRef
    29.Jaskolla, T.W., Lehmann, W.D., Karas, M.: 4-Chloro-alpha-cyanocinnamic acid is an advanced, rationally designed MALDI matrix. Proc. Natl. Acad. Sci. U. S. A. 105, 12200–12205 (2008)CrossRef
    30.Fukuyama, Y., Tanimura, R., Maeda, K., Watanabe, M., Kawabata, S.I., Iwamoto, S., Izumi, S., Tanaka, K.: Alkylated dihydroxybenzoic acid as a MALDI matrix additive for hydrophobic peptide analysis. Anal. Chem. 84, 4237–4243 (2012)CrossRef
    31.Jaskolla, T.W., Fuchs, B., Karas, M., Schiller, J.: The new matrix 4-chloro-alpha-cyanocinnamic acid allows the detection of phosphatidylethanolamine chloramines by MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 867–874 (2009)CrossRef
    32.Williams, T.L., Andrzejewski, D., Lay, J.O.: Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J. Am. Soc. Mass Spectrom. 14, 342–351 (2003)CrossRef
    33.Vargha, M., Takáts, Z., Konopka, A.: Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J. Microbiol. Methods 66, 399–409 (2006)CrossRef
    34.Jing, Z., Nan, L., Ridyard, M.: Simple and robust two-layer matrix/sample preparation method for MALDI MS/MS analysis of peptides. J. Proteome Res. 4, 1709–1716 (2005)CrossRef
    35.Beavis, R., Chaudhary, T., Chait, B.: a-Cyano-4hydroxycinnamic acid as a matrix for matrix-assisted laser desorption mass-spectrometry. Org. Mass. Spectrom. 27, 156–158 (1992)CrossRef
    36.Xu, Y.D., Bruening, M.L., Watson, J.T.: Nonspecific, on-probe cleanup methods for MALDI-MS samples. Mass Spectrom. Rev. 22, 429–440 (2003)CrossRef
    37.Pan, C., Xu, S., Zhou, H.: Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Anal. Bioanal. Chem. 387, 193–204 (2007)CrossRef
    38.Duan, J., Wang, H., Cheng, Q.: On-plate desalting and SALDI-MS analysis of peptides with hydrophobic silicate nanofilms on a gold substrate. Anal. Chem. 82, 9211–9220 (2010)CrossRef
    39.Yao, J., Scott, J.R., Young, M.K., Wilkins, C.L.: Importance of matrix:analyte ratio for buffer tolerance using 2,5-dihydroxybenzoic acid as a matrix in matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry and matrix-assisted laser desorption/ionization-time of flight. J. Am. Soc. Mass Spectrom. 9, 805–813 (1998)CrossRef
    40.Zhang, X., Shi, L., Shu, S., Wang, Y., Zhao, K., Xu, N., Liu, S., Roepstorff, P.: An improved method of sample preparation on AnchorChip targets for MALDI-MS and MS/MS and its application in the liver proteome project. Proteomics 7, 2340–2349 (2007)CrossRef
    41.Luo, Q., Zou, H., Xiao, X.: Chromatographic separation of proteins on metal immobilized iminodiacetic acid-bound molded monolithic rods of macroporous poly (glycidyl methacrylate-co-ethylene dimethacrylate). J. Chromatogr. A 926, 255–264 (2001)CrossRef
    42.Dai, Y., Whittal, R.M., Li, L.: Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal. Chem. 71, 1087–1091 (1999)CrossRef
    43.Awade, A.C., Efstathiou, T.: Comparison of three liquid chromatographic methods for egg-white protein analysis. J. Chromatogr. B 723, 69–74 (1999)CrossRef
    44.Bourcier, S., Hoppilliard, Y.: B3LYP DFT molecular orbital approach, an efficient method to evaluate the thermochemical properties of MALDI matrices. Int. J. Mass. Spectrum. 217, 231–244 (2002)CrossRef
    45.Zhang, J., Ha, T.K., Knochenmuss, R., Zenobi, R.: Theoretical calculation of gas-phase sodium binding energies of common MALDI matrices. J. Phys. Chem. A 106, 6610–6617 (2002)CrossRef
    46.Polfer, N.C., Oomens, J., Suhai, S., Paizs, B.: Infrared spectroscopy and theoretical studies on gas-phase protonated leu-enkephalin and its fragments: direct experimental evidence for the mobile proton. J. Am. Chem. Soc. 120, 5887–5897 (2007)CrossRef
    47.Jaskolla, T.W., Karas, M.: Compelling evidence for lucky survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. J. Am. Soc. Mass Spectrom. 22, 976–988 (2011)CrossRef
    48.Knochenmuss, R.: Ion formation mechanisms in UV-MALDI. Analyst 131, 966–986 (2006)CrossRef
    49.Hoteling, A.J., Erb, W.J., Tyson, R.J.: Exploring the importance of the relative solubility of matrix and analyte in MALDI sample preparation using HPLC. Anal. Chem. 76, 5157–5164 (2004)CrossRef
    50.Fukuyama, Y., Nakajima, C., Furuichi, K.: Alkylated trihydroxyacetophenone as a MALDI matrix for hydrophobic peptides. Anal. Chem. 85, 9444–9448 (2013)CrossRef
    51.Ghafly, H.A.I., Siraj, N., Das, S., Regmi, B.P., Magut, P.K.S., Galpothdeniya, W.I.S., Murray, K.K., Warner, I.M.: GUMBOS matrices of variable hydrophobicity for matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 28, 2307–2314 (2014)CrossRef
  • 作者单位:Sheng Wang (1)
    Zhaohui Xiao (1)
    Chunsheng Xiao (2)
    Huixin Wang (1)
    Bing Wang (1)
    Ying Li (1)
    Xuesi Chen (2)
    Xinhua Guo (1)

    1. College of Chemistry, Jilin University, Changchun, 130012, China
    2. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
Low-abundance samples and salt interference are always of great challenges for the practical protein profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Herein, a series of carboxyl-esterified derivatives of α-cyano-4-hydroxycinnamic acid (CHCA) were synthesized and evaluated as matrices for MALDI-MS analysis of protein. Among them, (E)-propyl α-cyano-4-hydroxyl cinnamylate (CHCA-C3) was found to exhibit excellent assay performance for intact proteins by improving the detection sensitivity 10 folds compared with the traditional matrices [i.e., super2,5-dihydroxybenzoic acid (superDHB), sinapic acid (SA), and CHCA]. In addition, CHCA-C3 was shown to have high tolerance to salts, the ion signal of myoglobin was readily detected even in the presence of urea (8 M), NH4HCO3 (2 M), and KH2PO4 (500 mM), meanwhile sample washability was robust. These achievements were mainly attributed to improved ablation ability and increased hydrophobicity or affinity of CHCA-C3 to proteins in comparison with hydrophilic matrixes, leading to more efficient ionization of analyte. Furthermore, direct analysis of proteins from crude egg white demonstrated that CHCA-C3 was a highly efficient matrix for the analysis of low-abundance proteins in complex biological samples. These outstanding performances indicate the tremendous potential use of CHCA-C3 in protein profiling by MALDI-MS.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.