Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction
详细信息    查看全文
  • 作者:Roya Kabiri (1)
    Hassan Namazi (1) (2)
  • 关键词:Graphene ; Reduced graphene oxide ; Nanocrystalline cellulose ; Click reaction
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:16
  • 期:7
  • 全文大小:
  • 参考文献:1. Abdul Khalil H, Bhat A, Ireana Yusra A (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963-79 CrossRef
    2. Bai W, Holbery J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16(3):455-65 CrossRef
    3. Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406-11 CrossRef
    4. Brownson DA, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196(11):4873-885 CrossRef
    5. Bustos-Ramírez K, Martínez-Hernández AL, Martínez-Barrera G, Icaza Md, Casta?o VM, Velasco-Santos C (2013) Covalently bonded chitosan on graphene oxide via redox reaction. Materials 6(3):911-26 CrossRef
    6. Chen W, Yan L, Bangal P (2010) Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J Phys Chem C 114(47):19885-9890 CrossRef
    7. Cho Y, Kim H, Choi Y (2013) A graphene oxide–photosensitizer complex as an enzyme-activatable theranostic agent. Chem Commun 49(12):1202-204 CrossRef
    8. Corrêa AC, de Morais Teixeira E, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):1183-192 CrossRef
    9. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22(40):4467-472 CrossRef
    10. Fernandez-Merino M, Guardia L, Paredes J, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon J (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426-432 CrossRef
    11. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183-91 CrossRef
    12. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479-500 CrossRef
    13. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339 CrossRef
    14. Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH, Jeon S (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25(46):6724-729 CrossRef
    15. Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90(4):1601-608 CrossRef
    16. Kolb HC, Finn M, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004-021 CrossRef
    17. Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc 124(25):7506-511 CrossRef
    18. Kwon J, Lee SH, Park KH, Seo DH, Lee J, Kong BS, Kang K, Jeon S (2011) Simple preparation of high-quality graphene flakes without oxidation using potassium salts. Small 7(7):864-68 CrossRef
    19. Lalia BS, Samad YA, Hashaikeh R (2013) Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance. J Solid State Electrochem 17(3):575-81 CrossRef
    20. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735-64 CrossRef
    21. Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites. Ultrason Sonochem 19(3):479-85 CrossRef
    22. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 83(4):1834-842 CrossRef
    23. Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101(14):5685-692 CrossRef
    24. Mao S, Yu K, Cui S, Bo Z, Lu G, Chen J (2011) A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Nanoscale 3(7):2849-853 CrossRef
    25. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73 CrossRef
    26. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941-994 CrossRef
    27. Namazi H, Jafarirad S (2008) Preparation of the new derivatives of cellulose and oligomeric species of cellulose containing magneson II chromophore. J Appl Polym Sci 110(6):4034-039 CrossRef
    28. Namazi H, Fathi F, Heydari A (2012) Nanoparticles based on modified polysaccharides. In: Hashim A (ed) The delivery of nanoparticles. inTech, croatia, pp 149-84
    29. Namazi H, Mosadegh M, Hayasi M (2014) New developments in polycaprolactone-layered silicate nano-biocomposites: fabrication and properties. Handbook of polymer nanocomposites processing performance and application. Springer, New York, pp 21-2 CrossRef
    30. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666-69 CrossRef
    31. Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490(7419):192-00 CrossRef
    32. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217-24 CrossRef
    33. Peng P, Cao X, Peng F, Bian J, Xu F, Sun R (2012) Binding cellulose and chitosan via click chemistry: synthesis, characterization, and formation of some hollow tubes. J Polym Sci Part A 50(24):5201-210 CrossRef
    34. Pham TA, Kumar NA, Jeong YT (2010) Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles. Synth Met 160(17):2028-036 CrossRef
    35. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668-74 CrossRef
    36. Qi H, Liebert T, Meister F, Heinze T (2009) Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym 69(10):779-84 CrossRef
    37. Rodríguez-González C, Martínez-Hernández AL, Casta?o VM, Kharissova OV, Ruoff RS, Velasco-Santos C (2012) Polysaccharide nanocomposites reinforced with graphene oxide and keratin-grafted graphene oxide. Ind Eng Chem Res 51(9):3619-629 CrossRef
    38. Ryu HJ, Mahapatra SS, Yadav SK, Cho JW (2013) Synthesis of click-coupled graphene sheet with chitosan: effective exfoliation and enhanced properties of their nanocomposites. Eur Polym J 49(9):2627-634 CrossRef
    39. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-soluble graphene covalently functionalized by biocompatible poly-l -lysine. Langmuir 25(20):12030-2033 CrossRef
    40. Shang W, Huang J, Luo H, Chang PR, Feng J, Xie G (2013) Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. Cellulose 20(1):179-90 CrossRef
    41. Shen J, Li N, Shi M, Hu Y, Ye M (2010) Covalent synthesis of organophilic chemically functionalized graphene sheets. J Colloid Interface Sci 348(2):377-83 CrossRef
    42. Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987-992 CrossRef
    43. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728-65 CrossRef
    44. Soldano C, Talapatra S, Kar S (2013) Carbon nanotubes and graphene nanoribbons: potentials for nanoscale electrical interconnects. Electronics 2(3):280-14 CrossRef
    45. Some S, Kim Y, Yoon Y, Yoo H, Lee S, Park Y, Lee H (2013) High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Scientific reports 3. doi:10.1038/srep01929
    46. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558-565 CrossRef
    47. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4(1):25-9 CrossRef
    48. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192-195 CrossRef
    49. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889-92 CrossRef
    50. Wang Z, Ge Z, Zheng X, Chen N, Peng C, Fan C, Huang Q (2012) Polyvalent DNA–graphene nanosheets “click-conjugates. Nanoscale 4(2):394-99 CrossRef
    51. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107-31 CrossRef
    52. Xiao X, Miller PR, Narayan RJ, Brozik SM, Wheeler DR, Brener I, Wang J, Burckel DB, Polsky R (2014) Simultaneous detection of dopamine, ascorbic acid and uric acid at lithographically-defined 3D graphene electrodes. Electroanalysis 26(1):52-6 CrossRef
    53. Yadav M, Rhee K, Jung I, Park S (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20(2):687-98 CrossRef
    54. Yadollahi M, Namazi H (2013) Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites. J Nanopart Res 15(4):1- CrossRef
    55. Yang Q, Pan X, Clarke K, Li K (2011) Covalent functionalization of graphene with polysaccharides. Ind Eng Chem Res 51(1):310-17 CrossRef
    56. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429-437 CrossRef
    57. Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12(5):5996-022 CrossRef
  • 作者单位:Roya Kabiri (1)
    Hassan Namazi (1) (2)

    1. Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box: 51666, Tabriz, Iran
    2. Research Center for Pharmaceutical Nanonotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
  • ISSN:1572-896X
文摘
Reduced graphene oxide (RGO) sheet was functionalized with nanocrystalline cellulose (NCC) via click coupling between azide-functionalized graphene oxide (GO-N3) and terminal propargyl-functionalized nanocrystalline cellulose (PG-NCC). First, the reactive azide groups were introduced on the surface of GO with azidation of 2-chloroethyl isocyanate-treated graphene oxide (GO-Cl). Then, the resulted compounds were reacted with PG-NCC utilizing copper-catalyzed azide-alkyne cycloaddition. During the click reaction, GO was simultaneously reduced to graphene. The coupling was confirmed by Fourier transform infrared, Raman, DEPT135, and 13C NMR spectroscopy, and the complete exfoliation of graphene in the NCC matrix was confirmed with X-ray diffraction measurement. The degree of functionalization from the gradual mass loss of RGO-NCC suggests that around 23 mass?% has been functionalized covalently. The size of both NCC and GO was found to be in nanometric range, which decreased after click reaction.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.