Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites
详细信息    查看全文
  • 作者:Mehdi Yadollahi (1)
    Hassan Namazi (1) (2)
  • 关键词:Bionanocomposite ; Carboxymethyl cellulose ; Layered double hydroxide ; Anionic clays
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:15
  • 期:4
  • 全文大小:466KB
  • 参考文献:1. Alcantara ACS, Aranda P, Darder M, Ruiz-Hitzky E (2010) Bionanocomposites based on alginate–zein/layered double hydroxide materials as drug delivery systems. J Mater Chem 20:9495 CrossRef
    2. Basta AH, EL-Saied H (2000) Characterization of polymer complexes by thermal and IR spectral analyses. Polym Plast Technol Eng 39:887 CrossRef
    3. Basta AH, El-Saied H (2008) New approach for utilization of cellulose derivatives metal complexes in preparation of durable and permanent colored papers. Carbohydr Polym 74:301 CrossRef
    4. Chang PR, Yu J, Xiaofei Ma X, Anderson DP (2011) Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohydr Polym 83:640 CrossRef
    5. Choi YJ, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6:633 CrossRef
    6. Choy JH, Kwak SY, Park JS, Jeong YJ, Portier J (1999) Intercalative Nanohybrids of nucleoside monophosphates and dna in layered metal hydroxide. J Am Chem Soc 121:1399 CrossRef
    7. Chung YL, Lai HM (2010) Preparation and properties of biodegradable starch-layered double hydroxide nanocomposites. Carbohydr Polym 80:525 CrossRef
    8. Darder M, Lopez-Blanco M, Aranda P, Leroux F, Ruiz-Hitzky E (2005) Bio-nanocomposites based on layered double hydroxides. Chem Mater 17:1969 CrossRef
    9. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309 CrossRef
    10. Desigaux L, Belkacem MB, Richard P, Cellier J, Leone P, Cario L, Leroux F, Taviot-Gueho C, Pitard B (2006) Self-assembly and characterization of layered double hydroxide/dna hybrids. Nano Lett 6:199 CrossRef
    11. Evans DG, Slade RCT (2005) Structural aspects of layered double hydroxides. Struct Bond 119:1
    12. Gorrasi G, Bugatti V, Vittoria V (2012) Pectins filled with LDH-antimicrobial molecules-preparation, characterization and physical properties. Carbohydr Polym 89:132 CrossRef
    13. Heinze T, Liebert T, Klüfers P, Meister F (1999) Carboxymethylation of cellulose in unconventional media. Cellulose 6:153 CrossRef
    14. Kang H, Huang G, Ma S, Bai Y, Ma H, Li Y, Yang X (2009) Coassembly of inorganic macromolecule of exfoliated LDH nanosheets with cellulose. J Phys Chem C 113:9157 CrossRef
    15. Kim B, Peppas NA (2002) Complexation phenomena in pH-responsive copolymer networks with pendent saccharides. Macromolecules 35:9545 CrossRef
    16. Kuang Y, Zhao L, Zhang S, Zhang F, Dong M, Xu S (2010) Morphologies, preparations and applications of layered double hydroxide micro-nanostructures. Materials 3:5220 CrossRef
    17. Leroux F, Gachon J, Besse JP (2004) Biopolymer immobilization during the crystalline growth of layered double hydroxide. J Solid State Chem 177:245 CrossRef
    18. Luna-Martinez JF, Hernandez-Uresti DB, Reyes-Melo ME, Guerrero-Salazar CA, Gonzalez-Gonzalez VA, Sepulveda-Guzman S (2011) Synthesis and optical characterization of ZnS–sodium carboxymethyl cellulose nanocomposite films. Carbohydr Polym 84:566 CrossRef
    19. Mandal S, Patil VS, Mayadevi S (2012) Alginate and hydrotalcite-like anionic clay composite systems: synthesis, characterization and application studies. Microporous Mesoporous Mater 158:241 CrossRef
    20. Meyer KH, Misch L (1937) Positions des atomes dans le nouveau modèle spatial de la cellulose. Helv Chim Acta 20:232 CrossRef
    21. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Razavi-Nouri M (2008) Tragacanth gum-graft-polyacrylonitrile: synthesis, characterization and hydrolysis. J Polym Res 15:173 CrossRef
    22. Oh JM, Kwak SY, Choy JH (2006) Intracrystalline structure of DNA molecules stabilized in the layered double hydroxide. J Phys Chem Solids 67:1028 CrossRef
    23. Oriakhi CO, Farr IV, Lerner MM (1996) Incorporation of poly(acrylic acid), poly(vinylsulfonate) and poly(styrenesulfonate) within layered double hydroxides. J Mater Chem 6:103 CrossRef
    24. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119 CrossRef
    25. Peng D, Wei Ch, Baojun Q (2006) Recent progress in polymer layered double hydroxide nanocomposites. Prog Nat Sci 16:573 CrossRef
    26. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22:323 CrossRef
    27. Shen J, Song Z, Qian X, Yang F (2010) Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: preparation and their use in papermaking. Carbohydr Polym 81:545 CrossRef
    28. Singh V, Ahmad S (2012) Synthesis and characterization of carboxymethyl cellulose-silver nanoparticle (AgNp)-silica hybrid for amylase immobilization. Cellulose 19:1759-769 CrossRef
    29. Song J, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19:411 CrossRef
    30. Stigsson V, Kloow G, Germgard U (2006) The influence of the solvent system used during manufacturing of CMC. Cellulose 13:705 CrossRef
    31. Valente JS, Figueras F, Gravelle M, Kumbhar P, Lopez J, Besse JP (2000) Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions. J Catal 189:370 CrossRef
    32. Wang Q, O’Hare D (2012) Recent Advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124 CrossRef
    33. Wang J, Somasundaran P (2005) Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. J Colloid Interface Sci 291:75 CrossRef
    34. Wu D, Chang PR, Ma X (2011) Preparation and properties of layered double hydroxide–carboxymethylcellulose sodium-glycerol plasticized starch nanocomposites. Carbohydr Polym 86:877 CrossRef
    35. Xu ZP, Jin Y, Liu S, Hao ZP, Lu GQM (2008) Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces. J Colloid Interface Sci 326:522 CrossRef
    36. Yang XH, Zhu WL (2007) Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose 14:409 CrossRef
    37. Yu B, Bian H, Plank J (2010) Self-assembly and characterization of Ca–Al–LDH nanohybrids containing casein proteins as guest anions. J Phys Chem Solids 71:468 CrossRef
    38. Zakharov NA, ZhA E, Koval EM, Kalinnikov VT, Chalykh AE (2005) Hydroxyapatite-carboxymethyl cellulose nanocomposite biomaterial. Inorg Mater 41:592
    39. Zümreoglu-Karan B, Ay AN (2012) Layered double hydroxides—multifunctional nanomaterials. Chem Pap 66:1 CrossRef
  • 作者单位:Mehdi Yadollahi (1)
    Hassan Namazi (1) (2)

    1. Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
    2. Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
  • ISSN:1572-896X
文摘
In this study, coprecipitation method was employed for intercalation of carboxy methyl cellulose (CMC) into hydrotalcite-like anionic clays (Mg/Al and Ni/Al). The synthesized nanocomposites were characterized using FTIR, XRD, TEM, and Thermo gravimetric analysis. Furthermore, their swelling behavior was studied at various pH values. The intercalation of Carboxymethyl cellulose polymeric chains into LDH sheets was confirmed by FTIR spectroscopy and XRD analysis. The d-values are 1.73?nm for the Mg–Al–CMC–LDH and 2.23?nm for the Ni–Al–CMC–LDH, supporting a multilayer arrangement of CMC into the LDH interlayer space. Thermo gravimetric analysis showed a better thermal resistance of CMC in the presence of LDH sheets, especially for Mg–Al–CMC–LDH. The obtained nanocomposites revealed a pH dependent swelling behavior. The swelling of the prepared nanocomposites increased slowly with increasing pH from 2 to 10. However, their swelling ratio increased sharply in the pH values above 10.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.