Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles
详细信息    查看全文
  • 作者:Deepak Pathania ; Rishu Katwal ; Harpreet Kaur
  • 关键词:aluminum oxide ; nanoparticles ; electrochemical preparation ; photocatalysis
  • 刊名:International Journal of Minerals, Metallurgy, and Materials
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:3
  • 页码:358-371
  • 全文大小:6,673 KB
  • 参考文献:[1]W.Q. Jiao, M.B. Yue, Y.M. Wang, and M.Y. He, Synthesis of morphology-controlled mesoporous transition aluminas derived from the decomposition of alumina hydrates, Microporous Mesoporous Mater., 147(2012), No. 1, p. 167.CrossRef
    [2]C.B. Reid, J.S. Forrester, H.J. Goodshaw, E.H. Kisi, and G.J. Suaning, A study in the mechanical milling of alumina powder, Ceram. Int., 34(2008), No. 6, p. 1551.CrossRef
    [3]F. Mirjalili, M. Hasmaliza, and L.C. Abdullah, Size-controlled synthesis of nano a-alumina particles through the solgel method, Ceram. Int., 36(2010), No. 4, p. 1253.CrossRef
    [4]R. Kavitha and V. Jayaram, Deposition and characterization of alumina films produced by combustion flame pyrolysis, Surf. Coat. Technol., 201(2006), No. 6, p. 2491.CrossRef
    [5]D.H. Trinh, M. Ottosson, M. Collin, I. Reineck, L. Hultman, and H. Högberg, Nanocomposite Al2O3-ZrO2 thin films grown by reactive dual radio-frequency magnetron sputtering, Thin Solid Films, 516(2008), No. 15, p. 4977.CrossRef
    [6]L.H. Qu, C.Q. He, Y. Yang, Y.L. He, and Z.M. Liu, Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant, Mater. Lett., 59(2005), No. 29-30, p. 4034.CrossRef
    [7]K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, and W. Jiang, Synthesis of ultrafine Al2O3 powders by pulsed laser ablation, J. Nanopart. Res., 2(2000), No. 1, p. 75.CrossRef
    [8]X.S. Peng, L.D. Zhang, G.W. Meng, X.F. Wang, Y.W. Wang, C.Z. Wang, and G.S. Wu, Photoluminescence and infrared properties of a-Al2O3 nanowires and nanobelts, J. Phys. Chem. B, 106(2002), No. 43, p. 11163.CrossRef
    [9]A. Rai, D. Lee, K. Park, and M.R. Zachariah, Importance of phase change of aluminum in oxidation of aluminum nanoparticles, J. Phys. Chem. B, 108(2004), No. 39, p. 14793.CrossRef
    [10]W.F. Li, X.L. Ma, W.S. Zhang, W. Zhang, Y. Li, and Z.D. Zhang, Synthesis and characterization of Al2O3 nanorods, Phys. Status Solidi A, 203(2006), No. 2, p. 294.CrossRef
    [11]J.S. Banait, B. Singh, and H. Kaur, Electrochemical synthesis of zinc(II) phenoxides and their coordination compounds, Portugaliae Electrochim. Acta, 25(2007), No. 4, p. 435.CrossRef
    [12]D. Suteu, C. Zaharia, D. Bilba, R. Muresan, A. Popescu, and A. Muresan, Decolorization wastewaters from the textile industry: physical methods, chemical methods, Ind. Textila, 60(2009), No. 5, p. 254.
    [13]C. Zaharia, D. Suteu, A. Muresan, R. Muresan, and A. Popescu, Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide, Environ. Eng. Manage. J., 8(2009), No. 6, p. 1359.
    [14]R.A. Schnick, The impetus to register new therapeutants for aquaculture, Prog. Fish Cult., 50(1988), No. 4, p. 190.CrossRef
    [15]S. Srivastava, R. Sinha, and D. Roy, Toxicological effects of malachite green, Aquat. Toxicol., 66(2004), No. 3, p. 319.CrossRef
    [16]S.J. Culp and F.A. Beland, Malachite green: a toxicological review, Int. J. Toxicol., 15(1996), No. 3, p. 219.CrossRef
    [17]D.J. Alderman, Malachite green: a review. J. Fish Dis., 8(1985), p. 298.
    [18]E. Oguz and B. Keskinler, Comparison among O3, PAC adsorption, O3/HCO3, O3/H2O2 and O3/PAC processes for the removal of Bomaplex Red CR-L dye from aqueous solution, Dyes Pigm., 74(2007), No. 2, p. 329.CrossRef
    [19]R. Katwal, H. Kaur, G. Sharma, M. Naushad, and D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, J. Ind. Eng. Chem., 31(2015), p. 173.CrossRef
    [20]T. Kim, C. Park, J. Yang, and S. Kim, Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, J. Hazard. Mater., 112(2004), No. 1-2, p. 95.CrossRef
    [21]D. Mohan, K.P. Singh, G. Singh, and K. Kumar, Removal of dyes from wastewater using flyash, a low-cost adsorbent, Ind. Eng. Chem. Res., 41(2002), No. 15, p. 3688.CrossRef
    [22]S. Wang, Y. Booyjoo, A. Choueib, and Z.H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud, Water Res., 39(2005), No. 1, p. 129.CrossRef
    [23]V.K. Gupta, S. Agarwal, D. Pathania, N.C. Kothiyal, and G. Sharma, Use of pectin–thorium(IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue, Carbohydr. Polym., 96(2013), No. 1, p. 277.CrossRef
    [24]P. Xu, G.M. Zeng, D.L. Huang, C. Lai, M.H. Zhao, Z. Wei, N.J. Li, C. Huang, and G.X. Xie, Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis, Chem. Eng. J., 203(2012), p. 423.CrossRef
    [25]M.N.V.R. Kumar, T.R. Sridhari, K.D. Bhavani, and P.K. Dutta, Trends in color removal from textile mill effluents, Colourage, 45(1998), No. 8, p. 25.
    [26]D. Beydoun, R. Amal, G. Low, and S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanopart. Res., 1(1999), No. 4, p. 439.CrossRef
    [27]N. Serpone, D. Lawless, and E. Pelizzetti, Subnanosecond characteristics and photophysics of nanosized TiO2 particulates from Rpart = 10 A to 134 A: Meaning for heterogeneous Photocatalysis, Fine Particles Sci. Technol., 12(1996), p. 657.CrossRef
    [28]T. Shiragami, S. Fukami, Y. Wada, and S. Yanagida, Semiconductor photocatalysis: effect of light intensity on nanoscale CdS-catalyzed photolysis of organic substrates, J. Phys. Chem., 97(1993), No. 49, p. 12882.CrossRef
    [29]T. Murakata, R. Yamamoto, Y. Yoshida, M. Hinohara, T. Ogata, and S. Sato, Preparation of ultra fine TiO2 particles dispersible in organic solvents and their photocatalytic properties, J. Chem. Eng. Jpn., 31(1998), No. 1, p. 21.CrossRef
    [30]C. Kormann, D.W. Bahnemann, and M.R. Hoffmann, Environmental photochemistry: is iron oxide (hematite) an active photocatalyst? A comparative study: a-Fe2O3, ZnO, TiO2, J. Photochem. Photobiol. A, 48(1989), No. 1, p. 161.CrossRef
    [31]V.K. Gupta, D. Pathania, N.C. Kothiyal, and G. Sharma, Polyaniline zirconium(IV) silicophosphate nanocomposite for remediation of methylene blue dye from waste water, J. Mol. Liq., 190(2014), p. 139.CrossRef
    [32]S.A. Abo-Farha, Photocatalytic degradation of monoazo and diazo dyes in wastewater on nanometer-sized TiO2, J. Am. Sci., 6(2010), No. 11, p. 130.
    [33]V.K. Gupta, D. Pathania, M. Asif, and G. Sharma, Liquid phase synthesis of pectin–cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity, J. Mol. Liq., 196(2014), p. 107.CrossRef
    [34]V.K. Gupta, T.A. Saleh, D. Pathania, B.S. Rathore, and G.A. Sharma, A cellulose acetate based nanocomposite for photocatalytic degradation of methylene blue dye under solar light, Ionics, 21(2015), No. 6, p. 1787.CrossRef
    [35]C.J. Huang, P.H. Chiu, Y.H. Wang, K.L. Chen, J.J. Linn, and C.F. Yang, Electrochemically controlling the size of gold nanoparticles, J. Electrochem. Soc., 153(2006), No. 12, p. D193.CrossRef
    [36]T. Picard, G. Cathalifaud-Feuillade, M. Mazet, and C. Vandensteendam, Cathodic dissolution in the electrocoagulation process using aluminium electrodes, J. Environ. Monit., 2(2000), No. 1, p. 77.CrossRef
    [37]B. Xu, J. Long, H. Tian, Y. Zhu, and X. Sun, Synthesis and characterization of mesoporous ?-alumina templated by saccharide molecules, Catal. Today, 147(2009), p. S46.CrossRef
    [38]H. Liu, G. Ning, Z. Gan, and Y. Lin, A simple procedure to prepare spherical a-alumina powders, Mater. Res. Bull., 44(2009), No. 4, p. 785.
    [39]R. Rogojan, E. Andronescu, C. Ghitulica, and S.B. Vasile, Synthesis and characterization of alumina nano-powder obtained by sol-gel method, UPB Sci. Bull. Ser. B., 73(2011), No. 2, p. 67.
    [40]W.H. Gitzen, Alumina as a Ceramic Material, The American Ceramic Society, Columbus, 1970.
    [41]J. Gangwara, K.K. Deya, K. Praveena, S.K. Tripathib, and A.K. Srivastavaa, Microstructure, phase formations and optical bands in nanostructured alumina, Adv. Mater. Lett., 2(2011), No. 6, p. 402.CrossRef
    [42]C.G. Zoski, Handbook of Electrochemistry, Elsevier, 2007, p. 27.
    [43]D.M. Seo, O. Borodin, D. Balogh, M. O’Connell, Q. Ly, S.D. Han, S. Passerini, and W.A. Henderson, Electrolyte solvation and ionic association: III. Acetonitrile-lithium salt mixtures–transport properties, J. Electrochem. Soc., 160(2013), No. 8, p. A1061.CrossRef
    [44]A.H. Abbar, Electrolytic preparation of copper powder with particle size less than 63µm, Al-Qadisiya J. Eng. Sci., 1(2008), No. 1, p. 32.
    [45]H.S. Goh, R. Adnan, and M.A. Farrukh, ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange, Turk. J. Chem., 35(2011), No. 3, p. 375.
    [46]V. Piriyawong, V. Thongpool, P. Asanithi, and P. Limsuwan, Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique, J. Nanomater., 2012(2012), art. No. 819403.CrossRef
    [47]F. Li, W. Bi, T. Kong, and Q.H. Qin, Optical and photocatalytic properties of novel CuS nanoplate-based architectutes synthesised by a solvothermal route, Cryst. Res. Technol., 44(2009), No. 7, p. 729.CrossRef
    [48]V.S. Kortov, A.E. Ermakov, A.F. Zatsepin, and S.V. Nikiforov, Luminescence properties of nanostructured alumina ceramic, Radiat. Meas., 43(2008), No. 2-6, p. 341.CrossRef
    [49]V. Srivastava, C.H. Weng, V.K. Singh, and Y.C. Sharma, Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies, J. Chem. Eng. Data, 56(2011), No. 4, p. 1414.CrossRef
    [50]A. Rabiezadeh, A.M. Hadian, and A. Ataie, Preparation of alumina/titanium diboride nano-composite powder by milling assisted sol–gel method, Int. J. Refract. Met. Hard. Mater., 31(2012), p. 121.CrossRef
    [51]M.R. Karim, M.A. Rahman, M.A.J. Miah, H. Ahmad, M. Yanagisawa, and M. Ito, Synthesis of ?-alumina particles and surface characterization, Appl. Sci., 4(2011), No. 5, p. 344.
    [52]B. Sathyaseelan, I. Baskaran, and K. Sivakumar, Phase transition behavior of nanocrystalline Al2O3 powders, Soft Nanosci. Lett., 3(2013). No. 4, p. 69.CrossRef
  • 作者单位:Deepak Pathania (1)
    Rishu Katwal (1)
    Harpreet Kaur (2)

    1. School of Chemistry, Shoolini University, Solan, 173212 (H.P.), India
    2. Department of Chemistry, Punjabi University, Patiala, 147002 (Punjab), India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Metallic Materials
    Mineral Resources
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1869-103X
文摘
In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet–visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.