Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation
详细信息    查看全文
  • 作者:Tao Wen ; Hui Zhang ; Yu Chong ; Wayne G. Wamer ; Jun-Jie Yin ; Xiaochun Wu
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:9
  • 期:6
  • 页码:1663-1673
  • 全文大小:2,910 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
  • 卷排序:9
文摘
Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nanostructures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H2O2) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, O2 is activated first, and the resulting reactive intermediates further activate H2O2 to produce •OH. The reactive intermediates exhibit singlet oxygen-like (1O2-like) reactivity, indicated by 1O2-specific oxidation reaction, quenching behaviors, and the lack of the typical 1O2 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H2O2 activation can induce much stronger NaA oxidation than that in the absence of H2O2. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.