A direct interaction between NQO1 and a chemotherapeutic dimeric naphthoquinone
详细信息    查看全文
  • 作者:Lakshmi Swarna Mukhi Pidugu ; J.C. Emmanuel Mbimba ; Muqeet Ahmad…
  • 关键词:NQO1 ; Dimeric naphthoquinone ; Oxidative stress ; Anti ; cancer agents
  • 刊名:BMC Structural Biology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:3,180 KB
  • 参考文献:1.O’Brien PJ. Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact. 1991;80(1):1–41.PubMed CrossRef
    2.Decosterd LA, Parsons IC, Gustafson KR, Cardellina II JH, McMahon JB, Cragg GM, et al. Structure, absolute stereochemistry, and synthesis of conocurvone, a potent, novel HIV-inhibitory naphthoquinone trimer from a Conospermum sp. J Amer Chem Soc. 1993;115:6673–9.CrossRef
    3.Kayser O, Kiderlen AF, Laatsch H, Croft SL. In vitro leishmanicidal activity of monomeric and dimeric naphthoquinones. Acta Trop. 2000;77(3):307–14.PubMed CrossRef
    4.Lim ES, Rhee YH, Park MK, Shim BS, Ahn KS, Kang H, et al. DMNQ S-64 induces apoptosis via caspase activation and cyclooxygenase-2 inhibition in human nonsmall lung cancer cells. Ann N Y Acad Sci. 2007;1095:7–18.PubMed CrossRef
    5.Wellington KW. Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Adv. 2015;5:20309–38.CrossRef
    6.Ross AE, Emadi A, Marchionni L, Hurley PJ, Simons BW, Schaeffer EM, et al. Dimeric naphthoquinones, a novel class of compounds with prostate cancer cytotoxicity. BJU Int. 2011;108(3):447–54.PubMed PubMedCentral CrossRef
    7.Emadi A, Le A, Harwood CJ, Stagliano KW, Kamangar F, Ross AE, et al. Metabolic and electrochemical mechanisms of dimeric naphthoquinones cytotoxicity in breast cancer cells. Bioorg Med Chem. 2011;19(23):7057–62.PubMed PubMedCentral CrossRef
    8.Emadi A, Sadowska M, Carter-Cooper B, Wonodi O, Muvarak N, Rassool F, et al. Dimeric Naphthoquinones: Novel Anti-Leukemic Agents Modulating Cellular Redox Status. In: American Society of Hematology (ASH) 55th Annual Meeting. New Orleans, LA, USA; 2013.
    9.Emadi A, Ross AE, Cowan KM, Fortenberry YM, Vuica-Ross M. A chemical genetic screen for modulators of asymmetrical 2,2′-dimeric naphthoquinones cytotoxicity in yeast. PLoS One. 2010;5(5):e10846.PubMed PubMedCentral CrossRef
    10.Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, et al. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc Natl Acad Sci U S A. 2007;104(28):11832–7.PubMed PubMedCentral CrossRef
    11.Asher G, Dym O, Tsvetkov P, Adler J, Shaul Y. The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry. 2006;45(20):6372–8.PubMed CrossRef
    12.Ernster L. DT Diaphorase: a historical review. Chem Scr. 1987;27A:1–13.
    13.Anwar A, Dehn D, Siegel D, Kepa JK, Tang LJ, Pietenpol JA, et al. Interaction of human NAD(P)H:quinone oxidoreductase 1 (NQO1) with the tumor suppressor protein p53 in cells and cell-free systems. J Biol Chem. 2003;278(12):10368–73.PubMed CrossRef
    14.Asher G, Lotem J, Kama R, Sachs L, Shaul Y. NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci U S A. 2002;99(5):3099–104.PubMed PubMedCentral CrossRef
    15.Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK, et al. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem. 2003;278(2):703–11.PubMed CrossRef
    16.Garate M, Wani AA, Li G. The NAD(P)H:Quinone Oxidoreductase 1 induces cell cycle progression and proliferation of melanoma cells. Free Radic Biol Med. 2010;48(12):1601–9.PubMed CrossRef
    17.Chakrabarti G, Gerber DE, Boothman DA. Expanding antitumor therapeutic windows by targeting cancer-specific nicotinamide adenine dinucleotide phosphate-biogenesis pathways. Clin Pharmacol. 2015;7:57–68.PubMed PubMedCentral
    18.Li C, Liu Y, Wei S, Zhou Y. A meta-analysis of the association between NQO1 C609T variation and acute myeloid leukemia risk. Pediatr Blood Cancer. 2014;61(5):771–7.PubMed CrossRef
    19.Li C, Zhou Y. Association between NQO1 C609T polymorphism and acute lymphoblastic leukemia risk: evidence from an updated meta-analysis based on 17 case-control studies. J Cancer Res Clin Oncol. 2014;140(6):873–81.PubMed CrossRef
    20.Zeekpudsa P, Kukongviriyapan V, Senggunprai L, Sripa B, Prawan A. Suppression of NAD(P)H-quinone oxidoreductase 1 enhanced the susceptibility of cholangiocarcinoma cells to chemotherapeutic agents. J Exp Clin Cancer Res. 2014;33:11.PubMed PubMedCentral CrossRef
    21.Siegel D, Gibson NW, Preusch PC, Ross D. Metabolism of diaziquone by NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase): role in diaziquone-induced DNA damage and cytotoxicity in human colon carcinoma cells. Cancer Res. 1990;50(22):7293–300.PubMed
    22.Siegel D, Gibson NW, Preusch PC, Ross D. Metabolism of mitomycin C by DT-diaphorase: role in mitomycin C-induced DNA damage and cytotoxicity in human colon carcinoma cells. Cancer Res. 1990;50(23):7483–9.PubMed
    23.Emadi A, Harwood JS, Kohanim S, Stagliano KW. Regiocontrolled synthesis of the trimeric quinone framework of conocurvone. Org Lett. 2002;4(4):521–4.PubMed CrossRef
    24.Adams MA, Jia Z. Modulator of drug activity B from Escherichia coli: crystal structure of a prokaryotic homologue of DT-diaphorase. J Mol Biol. 2006;359(2):455–65.PubMed CrossRef
    25.Buryanovskyy L, Fu Y, Boyd M, Ma Y, Hsieh TC, Wu JM, et al. Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry. 2004;43(36):11417–26.PubMed PubMedCentral CrossRef
    26.Faig M, Bianchet MA, Talalay P, Chen S, Winski S, Ross D, et al. Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Proc Natl Acad Sci U S A. 2000;97(7):3177–82.PubMed PubMedCentral CrossRef
    27.Pey AL, Megarity CF, Timson DJ. FAD binding overcomes defects in activity and stability displayed by cancer-associated variants of human NQO1. Biochim Biophys Acta. 2014;1842(11):2163–73.PubMed CrossRef
    28.Nolan KA, Doncaster JR, Dunstan MS, Scott KA, Frenkel AD, Siegel D, et al. Synthesis and biological evaluation of coumarin-based inhibitors of NAD(P)H: quinone oxidoreductase-1 (NQO1). J Med Chem. 2009;52(22):7142–56.PubMed CrossRef
    29.Li R, Bianchet MA, Talalay P, Amzel LM. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci U S A. 1995;92(19):8846–50.PubMed PubMedCentral CrossRef
    30.Faig M, Bianchet MA, Winski S, Hargreaves R, Moody CJ, Hudnott AR, et al. Structure-based development of anticancer drugs: complexes of NAD(P)H:quinone oxidoreductase 1 with chemotherapeutic quinones. Structure. 2001;9(8):659–67.PubMed CrossRef
    31.Winski SL, Faig M, Bianchet MA, Siegel D, Swann E, Fung K, et al. Characterization of a mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1 by biochemical, X-ray crystallographic, and mass spectrometric approaches. Biochemistry. 2001;40(50):15135–42.PubMed CrossRef
    32.Ghisla S, Massey V, Lhoste JM, Mayhew SG. Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry. 1974;13(3):589–97.PubMed CrossRef
    33.Sun M, Moore TA, Song PS. Molecular luminescence studies of flavins. I. The excited states of flavins. J Am Chem Soc. 1972;94(5):1730–40.PubMed CrossRef
    34.Sevcik J, Solovicova A, Hostinova E, Gasperik J, Wilson KS, Dauter Z. Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7 A resolution. Acta Crystallogr D Biol Crystallogr. 1998;54(Pt 5):854–66.PubMed CrossRef
    35.Cullen JJ, Hinkhouse MM, Grady M, Gaut AW, Liu J, Zhang YP, et al. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003;63(17):5513–20.PubMed
    36.Lewis A, Du J, Liu J, Ritchie JM, Oberley LW, Cullen JJ. Metastatic progression of pancreatic cancer: changes in antioxidant enzymes and cell growth. Clin Exp Metastasis. 2005;22(7):523–32.PubMed CrossRef
    37.Lewis A, Ough M, Li L, Hinkhouse MM, Ritchie JM, Spitz DR, et al. Treatment of pancreatic cancer cells with dicumarol induces cytotoxicity and oxidative stress. Clin Cancer Res. 2004;10(13):4550–8.PubMed CrossRef
    38.Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):271–81.PubMed PubMedCentral CrossRef
    39.Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr. 2013;69(Pt 7):1204–14.PubMed PubMedCentral CrossRef
    40.Storoni LC, McCoy AJ, Read RJ. Likelihood-enhanced fast rotation functions. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 3):432–8.PubMed CrossRef
    41.McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ. Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr. 2005;61(Pt 4):458–64.PubMed CrossRef
    42.McCoy AJ. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr. 2007;63(Pt 1):32–41.PubMed PubMedCentral CrossRef
    43.McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40(Pt 4):658–74.PubMed PubMedCentral CrossRef
    44.Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 1):22–5.PubMed CrossRef
    45.Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53(Pt 3):240–55.PubMed CrossRef
    46.Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr. 1999;55(Pt 1):247–55.PubMed CrossRef
    47.Winn MD, Isupov MN, Murshudov GN. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol Crystallogr. 2001;57(Pt 1):122–33.PubMed CrossRef
    48.Winn MD, Murshudov GN, Papiz MZ. Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 2003;374:300–21.PubMed CrossRef
    49.Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):355–67.PubMed PubMedCentral CrossRef
    50.Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr D Biol Crystallogr. 2015;71(Pt 1):136–53.PubMed PubMedCentral CrossRef
    51.Debreczeni JE, Emsley P. Handling ligands with Coot. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 4):425–30.PubMed PubMedCentral CrossRef
    52.Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 4):486–501.PubMed PubMedCentral CrossRef
    53.Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–32.PubMed CrossRef
    54.Smart OS, Womack TO, Flensburg C, Keller P, Paciorek W, Sharff A, et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 4):368–80.PubMed PubMedCentral CrossRef
    55.Bricogne G BE, Brandl M, Flensburg C, Keller P, Paciorek W, Roversi P, et al. BUSTER In., version 2.10.2 edn. Cambridge: Global Phasing Ltd.; 2011.
  • 作者单位:Lakshmi Swarna Mukhi Pidugu (1) (2) (3)
    J.C. Emmanuel Mbimba (3)
    Muqeet Ahmad (3)
    Edwin Pozharski (1) (2) (3)
    Edward A. Sausville (2)
    Ashkan Emadi (2)
    Eric A. Toth (1) (2) (3)

    1. Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
    2. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
    3. Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
  • 刊物主题:Biochemistry, general; Protein Science; Crystallography; Mass Spectrometry; Spectroscopy/Spectrometry;
  • 出版者:BioMed Central
  • ISSN:1472-6807
文摘
Background Multimeric naphthoquinones are redox-active compounds that exhibit antineoplastic, antiprotozoal, and antiviral activities. Due to their multimodal effect on perturbation of cellular oxidative state, these compounds hold great potential as therapeutic agents against highly proliferative neoplastic cells. In our previous work, we developed a series of novel dimeric naphthoquinones and showed that they were selectively cytotoxic to human acute myeloid leukemia (AML), breast and prostate cancer cell lines. We subsequently identified the oxidoreductase NAD(P)H dehydrogenase, quinone 1 (NQO1) as the major target of dimeric naphthoquinones and proposed a mechanism of action that entailed induction of a futile redox cycling.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.