Assessment of a Novel Algal Strain Chlamydomonas debaryana NIREMACC03 for Mass Cultivation, Biofuels Production and Kinetic Studies
详细信息    查看全文
  • 作者:Sanjeev Mishra ; Neetu Singh ; Anil Kumar Sarma
  • 关键词:Indoor photobioreactor ; Chlamydomonas debaryana ; Biomass ; Nitrogen stress ; Fatty acid profile
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:176
  • 期:8
  • 页码:2253-2266
  • 全文大小:888 KB
  • 参考文献:1.Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Ethanol can contribute to energy and environmental goals. Science (New York, N.Y.), 311(5760), 506-08.View Article
    2.Chouhan, A. P. S., & Sarma, A. K. (2013). Biodiesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as heterogeneous catalyst. Biomass and Bioenergy, 55, 386-89.View Article
    3.Singh, J., & Gu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14(9), 2596-610.View Article
    4.Harman-Ware, A. E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., & Debolt, S. (2013). Microalgae as a renewable fuel source: fast pyrolysis of Scenedesmus sp. Renewable Energy, 60, 625-32.View Article
    5.Kirrolia, A., Bishnoi, N. R., & Singh, R. (2013). Microalgae as a boon for sustainable energy production and its future research & development aspects. Renewable and Sustainable Energy Reviews, 20, 642-56.View Article
    6.Abou-Shanab, R. A. I., Hwang, J.-H., Cho, Y., Min, B., & Jeon, B.-H. (2011). Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Applied Energy, 88(10), 3300-306.View Article
    7.Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied Energy, 103, 444-67.View Article
    8.Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-06.View Article
    9.Pegallapati, A. K., & Nirmalakhandan, N. (2013). Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: performance evaluation. Renewable Energy, 56, 129-35.View Article
    10.Huang, J., Kang, S., Wan, M., Li, Y., Qu, X., Feng, F., Wang, J., Wang, W., Shen, G., & Li, W. (2014). Numerical and experimental study on the performance of flat-plate photobioreactors with different inner structures for microalgae cultivation. Journal of Applied Phycology, 27(1), 49-8.View Article
    11.Ebrahimian, A., Kariminia, H.-R., & Vosoughi, M. (2014). Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy, 71, 502-08.View Article
    12.Farid, M. S., Shariati, A., Badakhshan, A., & Anvaripour, B. (2013). Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresource Technology, 131, 555-59.View Article
    13.?akmak, Z. E., ?lmez, T. T., ?akmak, T., Menemen, Y., & Tekinay, T. (2014). Induction of triacylglycerol production in Chlamydomonas reinhardtii: comparative analysis of different element regimes. Bioresource Technology, 155, 379-87.View Article
    14.Lam, M. K., & Lee, K. T. (2012). Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy, 94, 303-08.View Article
    15.Phukan, M. M., Chutia, R. S., Konwar, B. K., & Kataki, R. (2011). Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88(10), 3307-312.View Article
    16.Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-28.View Article
    17.Bellou, S., & Aggelis, G. (2012). Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of Biotechnology, 164(2), 318-29.View Article
    18.Singh Chouhan, A. P., Singh, N., & Sarma, A. K. (2013). A comparative analysis of kinetic parameters from TGDTA of Jatropha curcas oil, biodiesel, petroleum diesel and B50 using different methods. Fuel, 109, 217-24.View Article
    19.Kirtania, K., & Bhattacharya, S. (2012). Application of the distributed activation energy model to the kinetic study of pyrolysis of the fresh water algae Chlorococcum humicola. Bioresource Technology, 107(3), 476-81.View Article
    20.Wu, L. F., Chen, P. C., Huang, A. P., & Lee, C. M. (2012). The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresource Technology, 113, 14-8.View Article
    21.Mortensen, L. M., & Gisler?d, H. R. (2014). The growth of Chlamydomonas reinhardtii as influenced by high CO2 and low O2 in flue gas from a silicomanganese smelter. Journal of Applied Phycology, 27, 633-38.View Article
    22.Ratha, S. K., Prasanna, R., Prasad, R. B. N., Sarika, C., Dhar, D. W., & Saxena, A. K. (2013). Modulating lipid accumulation and composition in microalgae by biphasic nitrogen supplementation. Aquaculture, 392-395, 69-6.View Article
    23.Benvenuti, G., Bosma, R., & Cuaresma, M. (2014). Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. Journal of Applied Phycology. doi:10.-007/?s10811-014-0470-8 .
    24.Rios, L. F., Klein, B. C., Luz, L. F., Maciel Filho, R., & Wolf Maciel, M. R. (2014
  • 作者单位:Sanjeev Mishra (1)
    Neetu Singh (1) (2)
    Anil Kumar Sarma (1)

    1. Sardar Swaran Singh National Institute of Renewable Energy, 12KM Stone, Jalandhar Kapurthala Road, Kapurthala, Punjab, 144 601, India
    2. Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
A novel microalgae strain Chlamydomonas debaryana (KJ210856) was isolated from a freshwater lake of Punjab, India, and cultivated considering climatic sustainability and inherent adaptability concern. C. debaryana was grown in a 30-L indoor photobioreactor to study the mass cultivation prospect and biofuel potential. Physicochemical characterization of biomass and the lipid was performed with effect to nitrogen stress. It showed a higher biomass yield (1.58?±?0.02?g?L?, dry weight) and twofold increase in lipid yield (552.78?±?9?mg?L?) with 34.2?±?0.19?% lipid content under nitrogen deficient condition. Strikingly, increase in triglycerides achieved with nitrogen depletion containing over 96?% of total fatty acids (C 14, C 16, and C 18). Proximate and ultimate analysis suggested the presence of relatively higher volatile matter and carbon-hydrogen ratio. Furthermore, lower moisture and ash content signified C. debaryana biomass has promising features towards biofuel applications. The pyrolytic behavior of the whole biomass was also studied using thermogravimetric analyzer (TGA) and kinetic parameters were estimated using different methods. Promising growth rate and lipid yield leading to feasible biofuel feed stock production in indoor photobioreactor along with autosediment potential of cells validates C. debaryana NIREMACC03, a potential strain for mass cultivation.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.