Neuro-imagerie du système opio?de encéphalique chez l’Homme
详细信息    查看全文
  • 作者:J. Maarrawi (1) (2)
    L. Garcia-Larrea (2)
  • 关键词:Douleurs neuropathiques ; Douleurs nociceptives ; Système opio?de endogène ; Tomographie par émission de positons ; Stimulation du cortex moteur ; Neuropathic pain ; Nociceptive pain ; Endogenous opioid system ; Positron emission Tomography ; Motor cortex stimulation
  • 刊名:Douleur et Analg篓娄sie
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:27
  • 期:1
  • 页码:19-31
  • 全文大小:481 KB
  • 参考文献:1. André-Obadia N, Peyron R, Mertens P, et al (2006) Transcranial magnetic stimulation for pain control: double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy. Clin Neurophysiol 117:1536-4
    2. Baumgartner U, Buchholz HG, Bellosevich A, et al (2006) High opiate receptor binding potential in the human lateral pain system. Neuroimage 30:692-
    3. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615-1 CrossRef
    4. Carroll D, Joint C, Maartens N, et al (2000) Motor cortex stimulation for chronic neuropathic pain: a preliminary study of 10 cases. Pain 84:431-
    5. Cesselin F (1995) Opioid and anti-opioid peptides. Fundam Clin Pharmacol 9:409-3 CrossRef
    6. Dannals RF, Ravert HT, Frost JJ, et al (1985) Radiosynthesis of an opiate receptor binding radiotracer: [11C]carfentanil. Int J Appl Radiat Isot 36:303-
    7. Dellemijn PLI, VanDuijn H, Vanneste JA (1998) Prolonged treatment with transdermal fentanyl in neuropathic pain. J Pain Symptom Manage 16:220- CrossRef
    8. Dellemijn PL, Vanneste JA (1997) Randomised double blind active-placebo-controlled crossover trial of intravenous fentanyl in neuropathic pain. Lancet 340:753- CrossRef
    9. Fillingim R, Maixner W (1995) Gender differences in the responses to noxious stimuli. Pain Forum 4:209-1 CrossRef
    10. Fonoff ET, Dale CS, Pagano RL, et al (2009) Antinociception induced by epidural motor cortex stimulation in na?ve conscious rats is mediated by the opioid system. Behav Brain Res 196:63-0
    11. Frost JJ, Wagner HN, Dannals RF, et al (1985) Imaging opiate receptors in the human brain by positron tomography. J Comput Assist Tomogr 9:231-
    12. Frost JJ, Wagner HN (1984) Kinetics of binding to opiate receptors in vivo predicted from in vitro parameters. Brain Res 305:1-1 CrossRef
    13. Garcia-Larrea L, Peyron R, Mertens P, et al (1999) Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 83:259-3
    14. Gear R, Levine J (1995) Antinociception produced by an ascending spino-supraspinal pathway. J Neurosci 15:3154-1
    15. Guillemin R, Ling N, Burgus R (1976) [Endorphins, hypothalamic and neurohypophysial peptides with morphinomimetic activity: isolation and molecular structure of alpha-endorphin]. C R Acad Sci Hebd Seances Acad Sci D 282:783-
    16. Hackler L, Zadina JE, Ge LJ, Kastin AJ (1997) Isolation of relatively large amounts of endomorphin-1 and endomorphin-2 from human brain cortex. Peptides 18:1635- CrossRef
    17. Hartmann-von Monakow K, Akert K, Künzle H (1979) Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in macaca fascicularis. Exp Brain Res 34:91-05
    18. Henriksen G, Willoch F (2008) Imaging of opioid receptors in the central nervous system. Brain 131(Pt 5):1171-6
    19. Iwamoto ET, Martin WR (1981) Multiple opioid receptors. Med Res Rev 1:411-0 CrossRef
    20. Jones AK, Cunningham VJ, Ha-Kawa S, et al (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumathoid arthritis. British J Rhumatol 33:909-6
    21. Jones AK, Kitchen ND, Watabe H, et al (1999) Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 19:803-
    22. Jones AK, Luthra SK, Maziere B, et al (1988) Regional cerebral opioid receptor studies with [11C]diprenorphine in normal volunteers. J Neurosci Methods 23:121-
    23. Jones AK, Watabe H, Cunningham VJ, et al (2004) Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 8:479-5
    24. Katayama Y, Fukaya C, Yamamoto T (1998) Poststroke pain control by chronic motor cortex stimulation: neurological characteristics predicting a favorable response. J Neurosurg 89:585-1 CrossRef
    25. Lefaucheur JP, Ménard-Lefaucheur I, Goujon C, et al (2011) Predictive value of rTMS in the identification of responders to epidural motor cortex stimulation therapy for pain. J Pain 12:1102-1
    26. Maarrawi J, Peyron R, Mertens P, et al (2013) Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. Pain 154:2563-
    27. Maarrawi J, Peyron R, Mertens P, et al (2007) Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 127:183-4
    28. Maarrawi J, Peyron R, Mertens P et al (2007) Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69:827-4
    29. Maarrawi J, Peyron R, Garcia-Larrea L (2006) Brain opioid receptor availability differs in central and peripheral neuropathic pain. In: Proceedings of the 11th world congress on Pain. Eds Herta Flor, Eija Kalso and Jonathan Dotrovsky, IASP press, Seattle 407-4
    30. Mertens P, Nuti C, Sindou M, et al (1999) Precentral cortex stimulation for the treatment of central neuropathic pain: results of a prospective study in a 20-patient series. Stereotact Funct Neurosurg 73:122-
    31. Nguyen JP, Lefaucheur JP, Decq P, et al (1999) Chronic motor cortex stimulation in the treatment of central and neuropathic pain: correlations between clinical, electrophysiological and anatomical data. Pain 82:245-1
    32. Nguyen JP, Lefaucher JP, Le Guerinel C, et al (2000) Motor cortex stimulation in the treatment of central and neuropathic pain. Arch Med Res 31:263-
    33. Pert CB, Kuhar MJ, Snyder SH (1975) Autoradiographic localization of the opiate receptor in rat brain. Life Sci 16:1849-3 CrossRef
    34. Pert CB, Snyder SH (1975) Identification of opiate receptor binding in intact animals. Life Sci 16:1623-4 CrossRef
    35. Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011- CrossRef
    36. Peyron R, Faillenot I, Mertens P, et al (2007) Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. Neuroimage 34:310-1
    37. Rowbotham MC, Reisner-Keller LA, Fields HL (1991) Both intravenous lidocaine and morphine reduce the pain of postherpetic neuralgia. Neurology 41:1024- CrossRef
    38. Rowbotham MC, Twilling L, Davies PS, et al (2003) Oral opioid therapy for chronic peripheral and central neuropathic pain. N Engl J Med 348:1223-2
    39. Sadzot B, Mayberg HS, Frost JJ (1990) Imaging opiate receptors in the human brain with positron emission tomography. Potential applications for drug addiction research. Acta Psychiatr Belg 90:9-9
    40. Sadzot B, Price JC, Mayberg HS, et al (1991) Quantification of human opiate receptor concentration and affinity using high and low specific activity [11C]diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 11:204-9
    41. Tsubokawa T, Katayama Y, Yamamoto T, et al (1991) Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl (Wien) 52:137-
    42. Unruh A (1996) Gender variations in clinical pain experience. Pain 65:123-7 CrossRef
    43. Vaccarino AL, Olson GA, Olson RD, Kastin AJ (1999) Endogenous opiates. Peptides 20:1527-4 CrossRef
    44. Willoch F, Schindler F, Wester HJ, et al (2004) Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108:213-0
    45. Willoch F, Tolle TR, Wester HJ, et al (1999) Central pain after pontine infarction is associated with changes in opioid receptor binding: a PET study with 11C-diprenorphine. AJNR Am J Neuroradiol 20:686-0
    46. Yamamoto T, Katayama Y, Hirayama T, Tsubokawa T (1997) Pharmacological classification of central post-stroke pain: comparison with the results of chronic motor cortex stimulation therapy. Pain 72:5-2 CrossRef
    47. Zubieta JK, Smith YR, Bueller JA, et al (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293:311-
    48. Zubieta JK, Smith YR, Bueller JA, et al (2002) Opioid Receptor-Mediated Antinociceptive Responses Differ in Men and Women. J Neurosci 22:5100-
  • 作者单位:J. Maarrawi (1) (2)
    L. Garcia-Larrea (2)

    1. Laboratoire de neurosciences, Faculté de médecine, Université St-Joseph, Beyrouth, Liban
    2. Centre de recherche en neurosciences de Lyon, équipe Neuropain, INSERM U1028, Lyon, France
  • ISSN:1951-6398
文摘
The existence of opioid receptors (OR) has been suspected for a long time, but their demonstration in nervous tissue and the discovery of their natural ligands were realized in the 1970’s. By 1985, the study of brain OR was possible in vivo using Positron Emission Tomography (PET). Since then, multiple PET studies contributed to clarify the physiology and pathology of human endogenous opioid system in several conditions and pathologies. Thus, activation studies in tonic experimental pain have demonstrated opioid system activation in the amygdala ipsilateral to the painful stimuli and in the medial and lateral thalamus, insular cortex and hypothalamus, and finally in the anterior cingulate gyrus and prefrontal cortex bilaterally. This activation was negatively correlated with the intensity of pain perception. These activation studies have also demonstrated a sex-dependent differential activation in the magnitude and direction of the endogenous opioid system. Concerning nociceptive pain, endogenous opioid secretion is very likely to occur as a reaction to pain, since PET studies have demonstrated a decrease in the binding of the exogenous ligand to OR in patients suffering of pain secondary to chronic inflammatory conditions like rheumatoid arthritis. Concerning neuropathic pain (NP), endogenous opioid secretion is also very likely to occur as a reaction to pain. Furthermore, brain opioid receptors are relatively spared in peripheral NP, while a loss of OR lateralized to the hemisphere containing the causal lesion of pain (contralateral to clinical pain) is most likely to occur in central NP, within the medial nociceptive pathways. This difference in OR distribution between the peripheral and central types of NP could explain their differential response to exogenous opioids which give better response in the peripheral type. Analgesic Motor Cortex Stimulation (MCS), indicated in severe refractory NP, induces endogenous opioid secretion in key areas of the endogenous opioid system, which may explain one of the mechanisms of action of this procedure. A preoperative diprenorphine PET scan may predict the potency of motor cortex stimulation to relive neuropathic pain. All these studies incite to the development of future investigations in order to clarify the role of the opioid system in various disorders of the nervous system.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.