Opposing Effects of NGF and proNGF on HIV Induced Macrophage Activation
详细信息    查看全文
  • 作者:Kimberly S. Williams ; Deirdre A. Killebrew…
  • 关键词:Inflammation ; Neuroprotection ; Calcium ; Actin ; p75 neurotrophin receptor ; TrkA
  • 刊名:Journal of Neuroimmune Pharmacology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:98-120
  • 全文大小:3,556 KB
  • 参考文献:Al-Shawi R, Hafner A, Chun S, Raza S, Crutcher K, Thrasivoulou C, Simons P, Cowen T (2007) ProNGF, sortilin, and age-related neurodegeneration. Ann N Y Acad Sci 1119:208–215CrossRef PubMed
    Belrose JC, Masoudi R, Michalski B, Fahnestock M (2014) Increased pro-nerve growth factor and decreased brain-derived neurotrophic factor in non-Alzheimer’s disease tauopathies. Neurobiol Aging 35:926–933CrossRef PubMed
    Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A 103:6735–6740PubMedCentral CrossRef PubMed
    Burger KL, Davis AL, Isom S, Mishra N, Seals DF (2011) The podosome marker protein Tks5 regulates macrophage invasive behavior. Cytoskeleton (Hoboken) 68:694–711CrossRef
    Caporali A, Pani E, Horrevoets AJ, Kraenkel N, Oikawa A, Sala-Newby GB, Meloni M, Cristofaro B, Graiani G, Leroyer AS, Boulanger CM, Spinetti G, Yoon SO, Madeddu P, Emanueli C (2008) Neurotrophin p75 receptor (p75NTR) promotes endothelial cell apoptosis and inhibits angiogenesis: implications for diabetes-induced impaired neovascularization in ischemic limb muscles. Circ Res 103:e15–26PubMedCentral CrossRef PubMed
    Capsoni S, Brandi R, Arisi I, D’Onofrio M, Cattaneo A (2011) A dual mechanism linking NGF/proNGF imbalance and early inflammation to Alzheimer’s disease neurodegeneration in the AD11 anti-NGF mouse model. CNS Neurol Disord Drug Targets 10:635–647CrossRef PubMed
    Conant K, McArthur JC, Griffin DE, Sjulson L, Wahl LM, Irani DN (1999) Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia. Ann Neurol 46:391–398CrossRef PubMed
    da Huang W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13PubMedCentral CrossRef
    da Huang W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRef
    Del Corno M, Liu QH, Schols D, de Clercq E, Gessani S, Freedman BD, Collman RG (2001) HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling. Blood 98:2909–2916CrossRef PubMed
    Fischer M, Dietmann A, Beer R, Broessner G, Helbok R, Pfausler B, Schmutzhard E, Lackner P (2013) Differential regulation of matrix-metalloproteinases and their tissue inhibitors in patients with aneurysmal subarachnoid hemorrhage. PLoS One 8, e59952PubMedCentral CrossRef PubMed
    Fischer-Smith T, Tedaldi EM, Rappaport J (2008) CD163/CD16 coexpression by circulating monocytes/macrophages in HIV: potential biomarkers for HIV infection and AIDS progression. AIDS Res Hum Retrovir 24:417–421PubMedCentral CrossRef PubMed
    Garaci E, Caroleo MC, Aloe L, Aquaro S, Piacentini M, Costa N, Amendola A, Micera A, Calio R, Perno CF, Levi-Montalcini R (1999) Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV. Proc Natl Acad Sci U S A 96:14013–14018PubMedCentral CrossRef PubMed
    Giulian D, Vaca K, Noonan CA (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250:1593–1596CrossRef PubMed
    Harrold SM, Dragic JM, Brown SL, Achim CL (2001) Neurotrophic factor regulation of human immunodeficiency virus type 1 replication in human blood-derived macrophages through modulation of coreceptor expression. Adv Exp Med Biol 493:41–47CrossRef PubMed
    Ibanez CF (2002) Jekyll-Hyde neurotrophins: the story of proNGF. Trends Neurosci 25:284–286CrossRef PubMed
    Johnston JB, Zhang K, Silva C, Shalinsky DR, Conant K, Ni W, Corbett D, Yong VW, Power C (2001) HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. Ann Neurol 49:230–241CrossRef PubMed
    Kanda T, Iwasaki T, Nakamura S, Kurokawa T, Ikeda K, Mizusawa H (2000) Self-secretion of fibroblast growth factor-9 supports basal forebrain cholinergic neurons in an autocrine/paracrine manner. Brain Res 876:22–30CrossRef PubMed
    Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96:8212–8216PubMedCentral CrossRef PubMed
    Kolson DL (2002) Neuropathogenesis of central nervous system HIV-1 infection. Clin Lab Med 22:703–717CrossRef PubMed
    Kruskal BA, Maxfield FR (1987) Cytosolic free calcium increases before and oscillates during frustrated phagocytosis in macrophages. J Cell Biol 105:2685–2693CrossRef PubMed
    Laskin DL, Sunil VR, Gardner CR, Laskin JD (2011) Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 51:267–288PubMedCentral CrossRef PubMed
    Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948CrossRef PubMed
    Lee MH, Amin ND, Venkatesan A, Wang T, Tyagi R, Pant HC, Nath A (2013) Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation. J Neurovirol 19:418–431PubMedCentral CrossRef PubMed
    Liuzzi GM, Mastroianni CM, Santacroce MP, Fanelli M, D’Agostino C, Vullo V, Riccio P (2000) Increased activity of matrix metalloproteinases in the cerebrospinal fluid of patients with HIV-associated neurological diseases. J Neurovirol 6:156–163CrossRef PubMed
    Longo FM, Yang T, Knowles JK, Xie Y, Moore LA, Massa SM (2007) Small molecule neurotrophin receptor ligands: novel strategies for targeting Alzheimer’s disease mechanisms. Curr Alzheimer Res 4:503–506CrossRef PubMed
    Louboutin JP, Reyes BA, Agrawal L, Van Bockstaele EJ, Strayer DS (2011) HIV-1 gp120 upregulates matrix metalloproteinases and their inhibitors in a rat model of HIV encephalopathy. Eur J Neurosci 34:2015–2023CrossRef PubMed
    Martin S, Dicou E, Vincent JP, Mazella J (2005) Neurotensin and the neurotensin receptor-3 in microglial cells. J Neurosci Res 81:322–326CrossRef PubMed
    Meeker RB, Poulton W, Markovic-Plese S, Hall C, Robertson K (2011) Protein changes in CSF of HIV-infected patients: evidence for loss of neuroprotection. J Neurovirol 17:258–273PubMedCentral CrossRef PubMed
    Mocchetti I, Bachis A (2004) Brain-derived neurotrophic factor activation of TrkB protects neurons from HIV-1/gp120-induced cell death. Crit Rev Neurobiol 16:51–57CrossRef PubMed
    Mocchetti I, Nosheny RL, Tanda G, Ren K, Meyer EM (2007) Brain-derived neurotrophic factor prevents human immunodeficiency virus type 1 protein gp120 neurotoxicity in the rat nigrostriatal system. Ann N Y Acad Sci 1122:144–154CrossRef PubMed
    Mufson EJ, Counts SE, Fahnestock M, Ginsberg SD (2007) Cholinotrophic molecular substrates of mild cognitive impairment in the elderly. Curr Alzheimer Res 4:340–350CrossRef PubMed
    Myers JT, Swanson JA (2002) Calcium spikes in activated macrophages during Fcgamma receptor-mediated phagocytosis. J Leukoc Biol 72:677–684PubMed
    Nico B, Mangieri D, Benagiano V, Crivellato E, Ribatti D (2008) Nerve growth factor as an angiogenic factor. Microvasc Res 75:135–141CrossRef PubMed
    Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S (2000) Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci 113(Pt 17):3073–3084PubMed
    Ohsawa K, Imai Y, Sasaki Y, Kohsaka S (2004) Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem 88:844–856CrossRef PubMed
    Patel PC, Harrison RE (2008) Membrane ruffles capture C3bi-opsonized particles in activated macrophages. Mol Biol Cell 19:4628–4639PubMedCentral CrossRef PubMed
    Peng S, Wuu J, Mufson EJ, Fahnestock M (2004) Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol 63:641–649CrossRef PubMed
    Pulliam L, Herndier B, Tang N, McGrath M (1991a) Human immunodeficiency virus-infected macrophages produce soluable factors that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 87:506–512CrossRef
    Pulliam L, Herndier BG, Tang NM, McGrath MS (1991b) Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 87:503–512PubMedCentral CrossRef PubMed
    Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Ser B Biol Sci 361:1545–1564CrossRef
    Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW Jr, Vasquez GM, Wiltrout TA, Chertova E, Grimes MK, Sattentau Q, Arthur LO, Henderson LE, Lifson JD (1998) Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol 72:7992–8001PubMedCentral PubMed
    Russo R, Siviglia E, Gliozzi M, Amantea D, Paoletti A, Berliocchi L, Bagetta G, Corasaniti MT (2007) Evidence implicating matrix metalloproteinases in the mechanism underlying accumulation of IL-1beta and neuronal apoptosis in the neocortex of HIV/gp120-exposed rats. Int Rev Neurobiol 82:407–421CrossRef PubMed
    Samah B, Porcheray F, Gras G (2008) Neurotrophins modulate monocyte chemotaxis without affecting macrophage function. Clin Exp Immunol 151:476–486PubMedCentral CrossRef PubMed
    Samah B, Porcheray F, Dereuddre-Bosquet N, Gras G (2009) Nerve growth factor stimulation promotes CXCL-12 attraction of monocytes but decreases human immunodeficiency virus replication in attracted population. J Neurovirol 15:71–80CrossRef PubMed
    Shi J, Longo FM, Massa SM (2013) A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells 31:2561–2574CrossRef PubMed
    Streit WJ (2005) Microglia and neuroprotection: implications for Alzheimer’s disease. Brain Res Brain Res Rev 48:234–239CrossRef PubMed
    Taraboletti G, Benelli R, Borsotti P, Rusnati M, Presta M, Giavazzi R, Ruco L, Albini A (1999) Thrombospondin-1 inhibits Kaposi’s sarcoma (KS) cell and HIV-1 Tat-induced angiogenesis and is poorly expressed in KS lesions. J Pathol 188:76–81CrossRef PubMed
    Tsai HC, Ye SY, Kunin CM, Lee SS, Wann SR, Tai MH, Shi MH, Liu YC, Chen YS (2011) Expression of matrix metalloproteinases and their tissue inhibitors in the serum and cerebrospinal fluid of patients with HIV-1 infection and syphilis or neurosyphilis. Cytokine 54:109–116CrossRef PubMed
    Varon C, Tatin F, Moreau V, Van Obberghen-Schilling E, Fernandez-Sauze S, Reuzeau E, Kramer I, Genot E (2006) Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol 26:3582–3594PubMedCentral CrossRef PubMed
    Verollet C, Souriant S, Bonnaud E, Jolicoeur P, Raynaud-Messina B, Kinnaer C, Fourquaux I, Imle A, Benichou S, Fackler OT, Poincloux R, Maridonneau-Parini I (2015) HIV-1 reprograms the migration of macrophages. Blood 125:1611–1622CrossRef PubMed
    Williams KS, Killebrew DA, Clary GP, Seawell JA, Meeker RB (2015) Differential regulation of macrophage phenotype by mature and pro-nerve growth factor. J Neuroimmunol 285:76–93CrossRef PubMed
    Wu J, Zhao D, Wu S, Wang D (2015) Ang-(1–7) exerts protective role in blood–brain barrier damage by the balance of TIMP-1/MMP-9. Eur J Pharmacol 748:30–36CrossRef PubMed
    Yang T, Knowles JK, Lu Q, Zhang H, Arancio O, Moore LA, Chang T, Wang Q, Andreasson K, Rajadas J, Fuller GG, Xie Y, Massa SM, Longo FM (2008) Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS One 3, e3604PubMedCentral CrossRef PubMed
    Zhou F, Xue M, Qin D, Zhu X, Wang C, Zhu J, Hao T, Cheng L, Chen X, Bai Z, Feng N, Gao SJ, Lu C (2013) HIV-1 Tat promotes Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6-induced angiogenesis and tumorigenesis by regulating PI3K/PTEN/AKT/GSK-3beta signaling pathway. PLoS One 8, e53145PubMedCentral CrossRef PubMed
    Zhu X, Guo Y, Yao S, Yan Q, Xue M, Hao T, Zhou F, Zhu J, Qin D, Lu C (2014) Synergy between Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6 and HIV-1 Nef protein in promotion of angiogenesis and oncogenesis: role of the AKT signaling pathway. Oncogene 33:1986–1996CrossRef PubMed
  • 作者单位:Kimberly S. Williams (1) (2)
    Deirdre A. Killebrew (1) (3)
    Gillian P. Clary (1) (4)
    Rick B. Meeker (1) (2)

    1. Department of Neurology, CB #7025, University of North Carolina, 6109F Neuroscience Research Building, 115 Mason Farm Road, Chapel Hill, NC, 27599, USA
    2. Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, 27599, USA
    3. Center for Science and Mathematics Education, Stony Brook University, Stony Brook, NY, 11794, USA
    4. US Food and Drug Administration, Rockville, MD, 20852, USA
  • 刊物主题:Neurosciences; Immunology; Pharmacology/Toxicology; Virology; Cell Biology;
  • 出版者:Springer US
  • ISSN:1557-1904
文摘
Macrophage and microglial activation by HIV in the central nervous system (CNS) triggers the secretion of soluble factors which damage neurons. Therapeutic approaches designed to restore cognitive function by suppressing this inflammatory activity have not yet been successful. Recent studies have indicated that the phenotype of macrophages is differentially controlled by the mature and pro form of nerve growth factor. These cells therefore may be highly responsive to the imbalance in pro versus mature neurotrophins often associated with neurodegenerative diseases. In this study we evaluated the interactions between neurotrophins and HIV induced macrophage activation. HIV stimulation of macrophages induced a neurotoxic phenotype characterized by the expression of podosomes, suppression of calcium spiking and increased neurotoxin production. The secretome of the activated macrophages revealed a bias toward anti-angiogenic like activity and increased secretion of MMP-9. Co-stimulation with NGF and HIV suppressed neurotoxin secretion, increased calcium spiking, suppressed podosome expression and reversed 86 % of the proteins secreted in response to HIV, including MMP-9 and many growth factors. In contrast, co-stimulation of macrophages with proNGF not only failed to reverse the effects of HIV but increased the neurotoxic phenotype. These differential effects of proNGF and NGF on HIV activation provide a potential novel therapeutic avenue for controlling macrophage activation in response to HIV. Keywords Inflammation Neuroprotection Calcium Actin p75 neurotrophin receptor TrkA
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.