Fetale und perinatale Programmierung der Nierenfunktion
详细信息    查看全文
  • 作者:Prof. Dr. J. D枚tsch (1)
  • 关键词:Intrauterine Wachstumsrestriktion ; Intrauterines Milieu ; Glomerul盲re Filtrationsrate ; Schwangerschaft ; Geburtsgewicht ; Intrauterine growth retardation ; Intrauterine environment ; Glomerular filtration rate ; Pregnancy ; Birth weight
  • 刊名:Gyn?kologische Endokrinologie
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:12
  • 期:2
  • 页码:87-92
  • 全文大小:
  • 参考文献:1. Barker DJ, Winter PD, Osmond C et聽al (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577鈥?80 CrossRef
    2. D枚tsch J, Plank C, Amann K, Ingelfinger聽J (2009) The implications of fetal programming of glomerular number and renal function. J聽Mol Med 87:841鈥?48
    3. Lackland DT, Egan BM, Fan ZJ, Syddall聽HE (2001) Low birth weight contributes to the excess prevalence of end-stage renal disease in African Americans. J聽Clin Hypertens (Greenwich) 3:29鈥?1
    4. Vikse BE, Irgens LM, Leivestad T et聽al (2008) Low birth weight increases risk for end-stage renal disease. J聽Am Soc Nephrol 19:151鈥?57
    5. Khalil聽CA, Travert F, Fetita S et聽al (2010) Fetal exposure to maternal type聽1 diabetes is associated with renal dysfunction at adult age. Diabetes 59:2631鈥?636 CrossRef
    6. Lackland DT, Bendall HE, Osmond C et聽al (2000) Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med 160:1472鈥?476 CrossRef
    7. Li S, Chen SC, Shlipak M et聽al (2008) Low birth weight is associated with chronic kidney disease only in men. Kidney Int 73:637鈥?42 CrossRef
    8. Hallan S, Euser AM, Irgens LM et聽al (2008) Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Tr酶ndelag Health [HUNT 2] Study. Am J Kidney Dis 51:10鈥?0 CrossRef
    9. L贸pez-Bermejo A, Sitjar C, Cabacas A et聽al (2008) Prenatal programming of renal function: the estimated glomerular filtration rate is influenced by size at birth in apparently healthy children. Pediatr Res 64:97鈥?9 CrossRef
    10. Franco MC, Nishida SK, Sesso R (2008) GFR estimated from cystatin聽C versus creatinine in children born small for gestational age. Am J Kidney Dis 51:925鈥?32 CrossRef
    11. White SL, Perkovic V, Cass A et聽al (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54:248鈥?61 CrossRef
    12. D枚tsch J, Dittrich K, Plank C, Rascher聽W (2006) Is tacrolimus for childhood steroid-dependent nephrotic syndrome better than ciclosporin聽A? Nephrol Dial Transplant 21:1761鈥?763 CrossRef
    13. Sheu JN, Chen JH (2001) Minimal change nephrotic syndrome in children with intrauterine growth retardation. Am J Kidney Dis 37:909鈥?14 CrossRef
    14. Zidar N, Avgustin Cavic M, Kenda RB, Ferluga聽D (1998) Unfavorable course of minimal change nephrotic syndrome in children with intrauterine growth retardation. Kidney Int 54:1320鈥?323 CrossRef
    15. Plank C, 脰streicher I, Rascher W, D枚tsch聽J (2007) Low birth weight, but not postnatal weight gain, aggravates the course of nephrotic syndrome in children. Pediatr Nephrol 22:1881鈥?889 CrossRef
    16. Teeninga N, Schreuder MF, B枚kenkamp A et聽al (2008) Influence of low birth weight on minimal change nephrotic syndrome in children, including a meta-analysis. Nephrol Dial Transplant 23:1615鈥?620 CrossRef
    17. Goldstein AR, White RH, Akuse R, Chantler聽C (1992) Long-term follow-up of childhood Henoch-Sch枚nlein nephritis. Lancet 339:280鈥?82 CrossRef
    18. Zidar N, Cavic MA, Kenda RB et聽al (1998) Effect of intrauterine growth retardation on the clinical course and prognosis of IgA glomerulonephritis in children. Nephron 79:28鈥?2 CrossRef
    19. Plank C, Vasilache I, Dittrich K, D枚tsch聽J (2010) Early weight gain and outcome in Henoch-Sch枚nlein nephritis. Klin Padiatr 222:455鈥?59 CrossRef
    20. Hellstr枚m J, Hessel H, Jacobsson B et聽al (2001) Association between urinary tract infection, renal damage and birth size. Acta Paediatr 90:628鈥?31 CrossRef
    21. Howles SA, Edwards MH, Cooper C, Thakker聽RV (2013) Kidney stones: a fetal origins hypothesis. J聽Bone Miner Res 28:2535鈥?539
    22. Stoffers DA, Desai BM, DeLeon DD, Simmons聽RA (2003) Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes 52:734鈥?40 CrossRef
    23. N眉sken KD, D枚tsch J, Rauh M et聽al (2008) Uteroplacental insufficiency after bilateral uterine artery ligation in the rat: impact on postnatal glucose and lipid metabolism and evidence for metabolic programming of the offspring by sham operation. Endocrinology 149:1056鈥?063 CrossRef
    24. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch聽R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49:460鈥?67 CrossRef
    25. Elmes MJ, Gardner DS, Langley-Evans SC (2007) Fetal exposure to a maternal low-protein diet is associated with altered left ventricular pressure response to ischemia-reperfusion injury. Br J Nutr 98:93鈥?00 CrossRef
    26. Plank C, 脰streicher I, Hartner A et聽al (2006) Intrauterine growth retardation aggravates the course of acute mesangioproliferative glomerulonephritis in the rat. Kidney Int 70:1974鈥?982
    27. Wlodek ME, Westcott K, Siebel AL et聽al (2008) Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int 74:187鈥?95 CrossRef
    28. Plank C, N眉sken KD, Menendez-Castro C et聽al (2010) Intrauterine growth restriction following ligation of the uterine arteries leads to more severe glomerulosclerosis after mesangioproliferative glomerulonephritis in the offspring. Am J Nephrol 32:287鈥?95 CrossRef
    29. Langley-Evans SC (2009) Nutritional programming of disease: unravelling the mechanism. J聽Anat 215:36鈥?1
    30. Nuyt AM (2008) Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci (Lond) 114:1鈥?7 CrossRef
    31. Harrison M, Langley-Evans SC (2009) Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr 101:1020鈥?030 CrossRef
    32. Brenner BM, Mackenzie HS (1997) Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 63:S124鈥揝127
    33. Hoy WE, Bertram JF, Denton RD et聽al (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258鈥?65 CrossRef
    34. Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65:1339鈥?348 CrossRef
    35. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure: less of one, more of the other? Am J Hypertens 1:335鈥?47 CrossRef
    36. Keller G, Zimmer G, Mall G et聽al (2003) Nephron number in patients with primary hypertension. N聽Engl J Med 348:101鈥?08
    37. Hughson MD, Douglas-Denton R, Bertram JF, Hoy聽WE (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671鈥?78 CrossRef
    38. Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: cellular and molecular regulation. Mech Dev 92:31鈥?5 CrossRef
    39. Langley-Evans SC, Sherman RC, Welham SJ et聽al (1999) Intrauterine programming of hypertension: the role of the renin-angiotensin system. Biochem Soc Trans 27:88鈥?3
    40. Sahajpal V, Ashton N (2003) Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond) 104:607鈥?14 CrossRef
    41. Bogdarina I, Welham S, King PJ et聽al (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100:520鈥?26 CrossRef
    42. Simonetti GD, Raio L, Surbek D et聽al (2008) Salt sensitivity of children with low birth weight. Hypertension 52:625鈥?30 CrossRef
    43. Seckl JR, Meaney MJ (2004) Glucocorticoid programming. Ann N聽Y Acad Sci 1032:63鈥?4 CrossRef
    44. Bertram C, Trowern AR, Copin N et聽al (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type聽2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142:2841鈥?853
    45. Schoof E, Girstl M, Frobenius W et聽al (2001) Reduced placental gene expression of 11尾聽hydroxysteroid dehydogenase type聽2 and 15-hydroxyprostaglandin dehydrogenase in patients with preeclampsia. J聽Clin Endocrinol Metab 86:1313鈥?317
    46. Struwe E, Berzl D, Schild RL et聽al (2007) Simultaneously reduced gene expression of cortisol-activating and cortisol-inactivating enzymes in placentas of small-for-gestational-age neonates. Am J Obstet Gynecol 197:43.e1鈥?3.e6 CrossRef
    47. Ostreicher I, Almeida JR, Campean V et聽al (2010) Changes in 11beta-hydroxysteroid dehydrogenase type聽2 expression in a low-protein rat model of intrauterine growth restriction. Nephrol Dial Transplant 25:3195鈥?203 CrossRef
    48. Martin H, Gazelius B, Norman M (2000) Impaired acetylcholine-induced vascular relaxation in low birth weight infants: implications for adult hypertension? Pediatr Res 47:457鈥?62 CrossRef
    49. Franco MC, Christofalo DM, Sawaya AL et聽al (2006) Effects of low birth weight in 8- to 13-year-old children: implications in endothelial function and uric acid levels. Hypertension 48:45鈥?0 CrossRef
    50. Martin H, Hu J, Gennser G, Norman聽M (2000) Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birth weight. Circulation 102:2739鈥?744 CrossRef
    51. Phillips DI, Barker DJ (1997) Association between low birth weight and high resting pulse in adult life: is the sympathetic nervous system involved in programming the insulin resistance syndrome? Diabet Med 14:673鈥?77 CrossRef
    52. Alexander BT, Hendon AE, Ferril G, Dwyer聽TM (2005) Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45:754鈥?58 CrossRef
    53. Harrison SL, Mann KD, Pearce MS (2013) Early life influences kidney function at age 63鈥?4聽years, but so does adult body size: results from the Newcastle thousand families birth cohort. PLoS One 8:e66660. doi:10.1371/journal.pone.0066660 (Print 2013) CrossRef
    54. Ravelli AC, Meulen JH van der, Michels RP et聽al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173鈥?77 CrossRef
    55. Stanner SA, Yudkin JS (2001) Fetal programming and the Leningrad Siege study. Twin Res 4:287鈥?92 CrossRef
    56. Gluckman PD, Hanson MA, Cooper C, Thornburg聽KL (2008) Effect of in聽utero and early-life conditions on adult health and disease. N聽Engl J Med 359:61鈥?3
    57. Intapad S, Tull FL, Brown AD et聽al (2013) Renal denervation abolishes the age-dependent increase in blood pressure in female intrauterine growth-restricted rats at 12聽months of age. Hypertension 61:828鈥?34 CrossRef
    58. Clayton PE, Cianfarani S, Czernichow P et聽al (2007) Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. J聽Clin Endocrinol Metab 92:804鈥?10
    59. Singhal A, Cole TJ, Fewtrell M et聽al (2007) Promotion of faster weight gain in infants born small for gestational age: is there an adverse effect on later blood pressure? Circulation 115:213鈥?20 CrossRef
    60. Ben-Shlomo Y, McCarthy A, Hughes R et聽al (2008) Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly Growth Study. Hypertension 52:638鈥?44 CrossRef
    61. Rocha SO, Gomes GN, Forti AL et聽al (2005) Long-term effects of maternal diabetes on vascular reactivity and renal function in rat male offspring. Pediatr Res 58:1274鈥?279 CrossRef
    62. Nehiri T, Duong Van Huyen JP, Viltard M (2008) Exposure to maternal diabetes induces salt-sensitive hypertension and impairs renal function in adult rat offspring. Diabetes 57:2167鈥?175 CrossRef
    63. Chen YW, Chenier I, Tran S et聽al (2010) Maternal diabetes programs hypertension and kidney injury in offspring. Pediatr Nephrol 25:1319鈥?329 CrossRef
    64. Tran S, Chen YW, Chenier I et聽al (2008) Maternal diabetes modulates renal morphogenesis in offspring. J聽Am Soc Nephrol 19:943鈥?52
    65. Rocco L, Gil FZ, Fonseca Pletiskaitz TM聽da et聽al (2008) Effect of sodium overload on renal function of offspring from diabetic mothers. Pediatr Nephrol 23:2053鈥?060 CrossRef
    66. Boubred F, Buffat C, Feuerstein JM et聽al (2007) Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am J Physiol Renal Physiol 293:F1944鈥揊1949 CrossRef
    67. Mao C, Liu R, Bo L et聽al (2013) High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system. J聽Endocrinol 218:61鈥?3
    68. Cardoso HD, Cabral EV, Vieira-Filho LD et聽al (2009) Fetal development and renal function in adult rats prenatally subjected to sodium overload. Pediatr Nephrol 24:1959鈥?965 CrossRef
    69. Chadwick MA, Vercoe PE, Williams IH, Revell聽DK (2009) Dietary exposure of pregnant ewes to salt dictates how their offspring respond to salt. Physiol Behav 97:437鈥?45 CrossRef
    70. Dickinson H, Walker DW, Wintour EM, Moritz聽K (2007) Maternal dexamethasone treatment at midgestation reduces nephron number and alters renal gene expression in the fetal spiny mouse. Am J Physiol Regul Integr Comp Physiol 292:R453鈥揜461 CrossRef
    71. Woods LL, Weeks DA (2005) Prenatal programming of adult blood pressure: role of maternal corticosteroids. Am J Physiol Regul Integr Comp Physiol 289:R955鈥揜962 CrossRef
    72. Fetita LS, Sobngwi E, Serradas P et聽al (2006) Consequences of fetal exposure to maternal diabetes in offspring. J聽Clin Endocrinol Metab 91:3718鈥?724
  • 作者单位:Prof. Dr. J. D枚tsch (1)

    1. Klinik und Poliklinik f眉r Kinder- und Jugendmedizin, Uniklinik K枚ln, Kerpener Str. 62, 50937, K枚ln, Deutschland
  • ISSN:1610-2908
文摘
Impact Low birth weight is associated with reduced renal function which is sometimes already present in childhood. Among the diseases that are encountered more frequently or are more severe are glomerular diseases, hypertension, and chronic kidney disease. Causes A potential cause of this phenomenon is fetal programming which is defined as a permanent alteration of biological function by a temporary intrauterine event. However, low birth weight is not the only factor influencing renal function via fetal programming. Other factors include maternal diabetes, maternal smoking, high salt intake, and the administration of glucocorticoids during pregnancy. Mechanisms Possible mechanisms that may be involved are impaired nephrogenesis, which is represented by a diminished number of nephrons and other renal and extrarenal mechanisms. Human and animal data suggest that the consequences of fetal programming are influenced by the postnatal environment to a large extent. One of those postnatal modifiers appears to be nutrition in infancy and early childhood.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.