Ergodic properties of nonhomogeneous Markov chains defined on ordered Banach spaces with a base
详细信息    查看全文
  • 作者:F. Mukhamedov
  • 关键词:coefficient of ergodicity ; weak ergodicity ; L ; weak ergodicity ; nonhomogeneous Markov chain ; norm ordered space ; Doeblin’s condition ; 47A35 ; 28D05
  • 刊名:Acta Mathematica Hungarica
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:147
  • 期:2
  • 页码:294-323
  • 全文大小:1,130 KB
  • 参考文献:1.Albeverio S., H?egh-Krohn R.: Frobenius theory for positive maps of von Neumann algebras. Comm. Math. Phys. 64, 83-4 (1978)MATH MathSciNet CrossRef
    2.E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Springer-Verlag (Berlin, 1971).
    3.Ayupov Sh., Sarymsakov T. A.: On homogeneous Markov chains on semifields. Theor. Probab. Appl. 26, 510-20 (1982)MATH CrossRef
    4.Bartoszek W.: Norm residuality of ergodic operators. Bull. Acad. Polon. Sci. Math. 29, 165-67 (1981)MATH MathSciNet
    5.Bartoszek W.: Asymptotic properties of iterates of stochastic operators on (AL) Banach lattices. Anal. Polon. Math. 52, 165-73 (1990)MATH MathSciNet
    6.Bartoszek W., Kuna B.: Strong mixing Markov semigroups on \({{\mathcal C}_1}\) are meager. Colloq. Math. 105, 311-17 (2006)MATH MathSciNet CrossRef
    7.Bartoszek W., Kuna B.: On residualities in the set of Markov operators on \({\mathcal{C}_1}\) . Proc. Amer. Math. Soc. 133, 2119-129 (2005)MATH MathSciNet CrossRef
    8.Bartoszek W., Pulka M.: On mixing in the class of quadratic stochastic operators. Nonlin. Anal.: Theor. Methods. 86, 95-13 (2013)MATH MathSciNet CrossRef
    9.Berdikulov M.: Markov processes on order-unit spaces. Theory Probab. Appl. 53, 136-44 (2009)MATH MathSciNet CrossRef
    10.Cohen J. E., Iwasa Y., Rautu G., Ruskai M. B., Seneta E., Zbaganu G.: Relative entropy under mappings by stochastic matrices. Linear Algebra Appl. 179, 211-35 (1993)MATH MathSciNet CrossRef
    11.Coppersmith D., Wu C-W.: Conditions for weak ergodicity of nonhomogeneous Makov chains. Statis. Probab. Lett. 78, 3082-085 (2008)MATH MathSciNet CrossRef
    12.Dobrushin R. L.: Central limit theorem for nonstationary Markov chains. I, II, Theor. Probab. Appl. 1(65-0), 329-83 (1956)CrossRef
    13.Dorea C. C. Y., Pereira A. G. C.: A note on a variation of Doeblin’s condition for uniform ergodicity of Markov chains. Acta Math. Hungar. 110, 287-92 (2006)MATH MathSciNet CrossRef
    14.Dorogovtsev A. A.: Measure-valued Markov processes and stochastic flows on abstract spaces. Stochas. Stochastics Rep. 76, 395-07 (2004)MATH MathSciNet CrossRef
    15.Yu E., Emel’yanov, Wolff M.P.H.: Positive operators on Banach spaces ordered by strongly normal cones. Positivity. 7, 3-2 (2003)MathSciNet CrossRef
    16.Fagnola F., Rebolledo R.: On the existance of stationary states for quantum dyanamical semigroups. Jour. Math. Phys. 42, 1296-308 (2001)MATH MathSciNet CrossRef
    17.Fagnola F., Rebolledo R.: Transience and recurrence of quantum Markov semigroups. Probab. Theory Relat. Fields. 126, 289-06 (2003)MATH MathSciNet CrossRef
    18.Gaubert S., Qu Z.: Dobrushin’s ergodicity coefficient for Markov operators on cones and beyond, Integ. Eqs. Operator Theor. 81, 127-50 (2014)MathSciNet CrossRef
    19.Hajnal J.: Weak ergodicity in nonhomegeneous Markov chains. Proc. Cambridge Philos. Soc. 54, 233-46 (1958)MATH MathSciNet CrossRef
    20.P. R. Halmos, Lectures on Ergodic Theory, Chelsea (New York, 1960).
    21.Ipsen I.C.F., Salee T.M.: Ergodicity coefficients defined by vector norms. SIAM J. Matrix Anal. Appl. 32, 153-00 (2011)MATH MathSciNet CrossRef
    22.Iwanik A.: Approximation theorems for stochastic operators. Indiana Univ. Math. J. 29, 415-25 (1980)MATH MathSciNet CrossRef
    23.R. Jajte, Strong Linit Theorems in Non-commutative Probability, Lec. Notes Math., 1110, Springer (Berlin–Heidelberg, 1984).
    24.Johnson J., Isaacson D.: Conditions for strong ergodicity using intensity matrices. J. Appl. Probab. 25, 34-2 (1988)MATH MathSciNet CrossRef
    25.Kartashov N., Golomozyi V.: Maximal coulpling procedure and stability of discrete Markov chains I. Theory of Probab. & Math. Statis. 86, 93-04 (2013)MATH MathSciNet CrossRef
    26.Kastoryano M. J., Temme K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54, 052202 (2013)MathSciNet CrossRef
    27.Kirkland S.: The minimum coefficient of ergodicity for a Markov chain with a given directed graph. Linear Alg. Appl. 447, 139-54 (2014)MATH MathSciNet CrossRef
    28.Kolmogorov A. N.: On analytical methods in probability theory. Uspekhi Mat. Nauk. 5, 5-1 (1938)MathSciNet
    29.U. Krengel, Ergodic Theorems, Walter de Gruyter (Berlin–New York, 1985).
    30.Labuschagne L. E., Majewski W. A.: Maps on noncommutative Orlicz spaces. Illinois J. Math. 55, 1053-081 (2011)MATH MathSciNet
    31.?uczak A.: Quantum dynamical semigroups in strongly finite von Neumann algebras. Acta Math. Hungar. 92, 11-7 (2001)MATH MathSciNet CrossRef
    32.Madsen R. W., Isaacson D. L.: Strongly ergodic behavior for non-stationary Markov processes. Ann. Probab. 1, 329-35 (1973)MATH MathSciNet CrossRef
    33.S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Springer, Verlag (Berlin, 1994).
    34.Mitrophanov A.: Sensitivty and convergence of uniform ergodic Markov chains. J. Appl. Probab. 42, 1003-014 (2005)MATH MathSciNet
    35.Mukhamedov F.: Dobrushin ergodicity coefficient and ergodici
  • 作者单位:F. Mukhamedov (1)

    1. Department of Computational & Theoretical Sciences, Faculty of Science, International Islamic University Malaysia, P.O. Box, 141, 25710, Kuantan, Pahang, Malaysia
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Sciences
    Mathematics
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1588-2632
文摘
It is known that the Dobrushin’s ergodicity coefficient is one of the effective tools to study the behavior of non-homogeneous Markov chains. In the present paper, we define such an ergodicity coefficient of a positive mapping defined on ordered Banach spaces with a base (OBSB), and study its properties. In terms of this coefficient we prove the equivalence uniform and weak ergodicities of homogeneous Markov chains. This extends earlier results obtained in case of von Neumann algebras. Such a result allows to establish a category theorem for uniformly ergodic Markov operators. We find necessary and sufficient conditions for the weak ergodicity of nonhomogeneous discrete Markov chains (NDMC). L-weak ergodicity of NDMC defined on OBSB is also studied. We establish that the chain satisfies L-weak ergodicity if and only if it satisfies a modified Doeblin’s condition (\({\mathfrak{D}_1}\) -condition). Moreover, some connections between L-weak ergodicity and L-strong ergodicity have been established. Several nontrivial examples of NDMC which satisfy the \({\mathfrak{D}_1}\)-condition are provided. Key words and phrases coefficient of ergodicity weak ergodicity L-weak ergodicity nonhomogeneous Markov chain norm ordered space Doeblin’s condition
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.