Bounded real lemma and structured singular value versus diagonal scaling: the free noncommutative setting
详细信息    查看全文
  • 作者:Joseph A. Ball ; Gilbert Groenewald…
  • 关键词:Structured singular value ; Diagonal scaling ; Free noncommutative function ; Formal power series in free noncommuting indeterminates ; 93D09 ; 93B28 ; 13F25 ; 47A60
  • 刊名:Multidimensional Systems and Signal Processing
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:217-254
  • 全文大小:989 KB
  • 参考文献:Agler, J., & McCarthy, J. E.(accepted). Global holomorphic functions in several non-commuting variables. Canadian Journal of Mathematics.
    Agler, J., & McCarthy, J. E. (accepted). Pick interpolation for free holomorphic functions. American Journal of Mathematics.
    Ambrozie, C.-G., & Timotin, D. (2003). A von Neumann type inequality for certain domains in \({\mathbb{C}}^{n}\) . Proceedings of the American Mathematical Society, 131, 859–869.CrossRef MathSciNet MATH
    Arov, D. Z., Kaashoek, M. A., & Pik, D. R. (2006). The Kalman–Yakubovich–Popov inequality for discrete time systems of infinite dimension. Journal of Operator Theory, 55, 393–438.MathSciNet MATH
    Ball, J. A., & Bolotnikov, V. (2004). Realization and interpolation for Schur–Agler-class functions on domains with matrix polynomial defining function in \({\mathbb{C}}^{n}\) . Journal of Functional Analysis, 213, 45–87.CrossRef MathSciNet MATH
    Ball, J. A., Groenewald, G., & Malakorn, T. (2005). Structured noncommutative multidimensional linear systems. The SIAM Journal on Control and Optimzation, 44, 1474–1528.CrossRef MathSciNet MATH
    Ball, J. A., Groenewald, G., & Malakorn, T. (2006a). Conservative structured noncommutative multidimensional linear systems. In The state space method: Generalizations and applications (Vol. 161, pp. 179–223). Operator theory: Advances and applications. Basel: Birkhäuser.
    Ball, J. A., Groenewald, G., & Malakorn, T. (2006b). Bounded real lemma for structured noncommutative multidimensional linear systems and robust control. Multidimensional Systems and Signal Processing, 17, 119–150.
    Ball, J. A., Groenewald, G., & ter Horst, S. (2014). Structured singular values versus diagonal scaling: The noncommutative setting. In Proceedings of MTNS 2014, Groningen (pp. 1216–1221).
    Ball, J. A., & ter Horst, S. (2010). Robust control, multidimensional systems and multivariable Nevanlinna–Pick interpolation. In Topics in operator theory volume 2: Systems and mathematical physics (Vol. 161, pp. 13–88). Operator theory: Advances and applications. Basel: Birkhäuser
    Bercovici, H., Foias, C., & Tannenbaum, A. (1990). Structured interpolation theory. In Extension and interpolation of linear operators and matrix functions (Vol. 203, pp. 195–220). Operator theory: Advances and applications. Basel: Birkhäuser.
    Bercovici, H., Foias, C., & Tannenbaum, A. (1996). The structured singular value for linear input/output operators. SIAM Journal of Control and Optimization, 34, 1392–1404.CrossRef MathSciNet MATH
    Bercovici, H., Foias, C., Khargonekar, P. P., & Tannenbaum, A. (1994). On a lifting theorem for the structured singular value. Journal of Mathematical Analysis and Applications, 187, 617–627.CrossRef MathSciNet MATH
    Braatz, R., Young, P., Doyle, J. C., & Morari, M. (1994). Computational complexity of \(\mu \) calculations. IEEE Transactions on Automatic Control, 39, 1000–1002.CrossRef MathSciNet MATH
    Cimpric̆ J., Helton, J. W., Klep, I., McCullough, S., & Nelson, C. (2014). On real one-sided ideals in a free algebra. Journal of Pure and Applied Algebra, 218, 269–284.
    Douglas, R. G. (1966). On majorization, factorization, and range inclusion of operators on Hilbert space. Proceedings of the American Mathematical Society, 17, 413–415.CrossRef MathSciNet MATH
    Doyle, J. C. (1982). Analysis of feedback systems with structured uncertainties. IEEE Proceedings, 129, 242–250.CrossRef MathSciNet
    Dullerud, G. E., & Paganini, F. (2000). A course in robust control theory: A convex approach, texts in applied mathematics (Vol. 36). New York: Springer.
    Helton, J. W. (2002). Positive noncommutative polynomials are sums of squares. Annals of Mathematics, 156, 675–694.CrossRef MathSciNet MATH
    Helton, J. W., Klep, I., McCullough, S., & Slinglend, N. (2009). Noncommutative ball maps. Journal of Functional Analysis, 257, 47–87.CrossRef MathSciNet MATH
    Helton, J. W., Klep, I., & McCullough, S. (2011). Analytic mappings between noncommutative pencil balls. Journal of Mathematical Analysis and Applications, 376, 407–428.CrossRef MathSciNet MATH
    Helton, J. W., & McCullough, S. (2012). Every convex free basic semi-algebraic set has an LMI representation. Annals of Mathematics, 356, 979–1013.CrossRef MathSciNet
    Helton, J. W., & McCullough, S. (2004). A Positivstellensatz for non-commutative polynomials. Transactions of the American Mathematical Society, 356, 3721–3737.CrossRef MathSciNet MATH
    Helton, J. W., McCullough, S., & Vinnikov, V. (2012). Noncommutative convexity arises from linear matrix inequalities. Journal of Functional Analysis, 240, 105–191.CrossRef MathSciNet
    Kaliuzhnyi-Verbovetskyi, D. S., & Vinnikov, V. (2014). Foundations of noncommutative function theory, mathematical surveys and monographs (Vol. 199). Providence: AMS.
    Köroğlu, H., & Scherer, C. W. (2007). Robust performance analysis for structured linear time-varying perturbations with bounded rates-of-variation. IEEE Transactions on Automatic Control, 52(2), 197–211.CrossRef
    Lu, W.-M., Zhou, K., & Doyle, J. C. (1998). Stabilization of uncertain linear systems: An LFT approach. IEEE Transactions on Automatic Control, 41, 50–65.CrossRef MathSciNet
    Megretski, A., & Treil, S. (1993). Power distribution inequalities in optimization and robustness of uncertain systems. Journal of Mathematical Systems, Estimation, and Control, 3, 301–319.MathSciNet
    Packard, A., & Doyle, J. C. (1993). The complex structured singular value. Automatica, 29, 71–109.CrossRef MathSciNet MATH
    Paganini, F. (1996). Sets and constraints in the analysis of uncertain systems. Thesis submitted to California Institute of Technology, Pasadena.
    Paganini, F. (1996). Robust stability under mixed time-varying, time-invariant and parametric uncertainty. Automatica, 32(10), 1381–1392.CrossRef MathSciNet MATH
    Petersen, I. R., Anderson, B. D. O., & Jonckheere, E. A. (1991). A first principles solution to the non-singular \(H^{\infty }\) control problem. International Journal of Robust and Nonlinear Control, 1, 171–185.CrossRef MATH
    Poolla, K., & Tikku, A. (1995). Robust performance against time-varying structured perturbations. IEEE Transactions on Automatic Control, 40, 1589–1602.CrossRef MathSciNet MATH
    Reed, M., & Simon, B. (1972). Methods of modern mathematical physics I: Functional analysis. New York, London: Academic Press.MATH
    Rudin, W. (1973). Functional analysis. New York: McGraw-Hill (Second Edition, 1991).
    Safonov, M. G. (1980). Stability and robustness of multivariable feedback systems. Cambridge, MA: MIT Press.MATH
    Shamma, J. S. (1994). Robust stability with time-varying structured uncertainty. IEEE Transactions on Automatic Control, 39, 714–724.CrossRef MathSciNet MATH
    Scherer, C. W., & Köse, I. E. (2012). Gain-scheduled control synthesis using dynamic \(D\) -scales. IEEE Transactions on Automatic Control, 57(9), 714–724.CrossRef
    Takesaki, M. (1979). Theory of operator algebras I: Encyclopedia of mathematical sciences (Vol. 124). New York: Springer.CrossRef
    Treil, S. The gap between the complex structured singular value \(\mu \) and its upper bound is infinite (preprint).
    Zhou, K., Doyle, J. C., & Glover, K. (1996). Robust and optimal control. Upper Saddle River, NJ: Prentice-Hall.MATH
  • 作者单位:Joseph A. Ball (1)
    Gilbert Groenewald (2)
    Sanne ter Horst (2)

    1. Department of Mathematics, Virginia Tech, Blacksburg, VA, 24061-0123, USA
    2. Unit for BMI, Department of Mathematics, North-West University, Potchefstroom, 2531, South Africa
  • 刊物类别:Engineering
  • 刊物主题:Circuits and Systems
    Electronic and Computer Engineering
    Signal,Image and Speech Processing
    Artificial Intelligence and Robotics
  • 出版者:Springer Netherlands
  • ISSN:1573-0824
文摘
The structured singular value (often referred to simply as \(\mu \)) was introduced independently by Doyle and Safonov as a tool for analyzing robustness of system stability and performance in the presence of structured uncertainty in the system parameters. While the structured singular value provides a necessary and sufficient criterion for robustness with respect to a structured ball of uncertainty, it is notoriously difficult to actually compute. The method of diagonal (or simply D) scaling, on the other hand, provides an easily computable upper bound (which we call \(\widehat{\mu }\)) for the structured singular value, but provides an exact evaluation of \(\mu \) (or even a useful upper bound for \(\mu \)) only in special cases. However it was discovered in the 1990s that a certain enhancement of the uncertainty structure (i.e., letting the uncertainty parameters be freely noncommuting linear operators on an infinite-dimensional separable Hilbert space) resulted in the \(D\)-scaling procedure leading to an exact evaluation of \(\mu _{\text {enhanced}}\) (\(\mu _{\text {enhanced}} = \widehat{\mu }\)), at least for the tractable special cases which were analyzed in complete detail. On the one hand, this enhanced uncertainty has some appeal from the physical point of view: one can allow the uncertainty in the plant parameters to be time-varying, or more generally, one can catch the uncertainty caused by the designer’s decision not to model the more complex (e.g.  nonlinear) dynamics of the true plant. On the other hand, the precise mathematical formulation of this enhanced uncertainty structure makes contact with developments in the growing theory of analytic functions in freely noncommuting arguments and associated formal power series in freely noncommuting indeterminates. In this article we obtain the \(\widetilde{\mu } = \widehat{\mu }\) theorem for a more satisfactory general setting. Keywords Structured singular value Diagonal scaling Free noncommutative function Formal power series in free noncommuting indeterminates
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.