A Novel Fitness Function Based on Decomposition for Multi-objective Optimization Problems
详细信息    查看全文
  • 关键词:Evolutionary algorithm ; Multi ; objective optimization ; Fitness function ; Aggregation function ; Elliptic function
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9772
  • 期:1
  • 页码:16-25
  • 全文大小:129 KB
  • 参考文献:1.Coello, C.A.C., Van Veldhuizen, D.A., Gary, B.L.: Evolutionary Algorithms for Solving Multiobjective Problems. Kluwer, New York (2002)CrossRef MATH
    2.Zhou, A.M., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.F.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)CrossRef
    3.Deb, K., Pratap, S.A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef
    4.Kumphon, B.: Genetic algorithms for multi-objective optimization: application to a multi-reservoir system in the chi river basin Thailand. Water Resour. Manage 27(12), 4369–4378 (2013)CrossRef
    5.Pires, E.J.S., Machado, J.A.T., Oliveira, P.B.D.: Entropy diversity in multi-objective particle swarm optimization. Entropy 15(12), 5475–5491 (2013)CrossRef MATH
    6.Xue, B., Zhang, M.J., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656–1671 (2013)CrossRef
    7.Qu, B.Y., Suganthan, P.N.: Multi-objective differential evolution with diversity enhancement. J. Zhejian Univ. Sci. C-Comput. Electron. 11(7), 538–543 (2010)CrossRef
    8.Baatar, N., Jeong, K.Y., Koh, C.S.: Adaptive parameter controlling non-dominated ranking differential evolution for multi-objective optimization of electromagnetic problems. IEEE Trans. Magn. 50(2), 709–712 (2014)CrossRef
    9.Gong, M.G., Jiao, L.C., Du, H.F., Bo, L.F.: Multiobjective immune algorithm with nondiminated neighbor-based selection. Evol. Comput. 16(2), 225–255 (2008)CrossRef
    10.Shang, R.H., Jiao, L.C., Liu, F., Ma, W.P.: A novel immun clonal algorithm for MO problems. IEEE Trans. Evol. Comput. 16(1), 35–50 (2012)CrossRef
    11.Wang, L., Zhong, X., Liu, M.: A novel group search optimizer for multi-objective optimization. Expert Syst. Appl. 39(3), 2939–2946 (2012)CrossRef
    12.Zhan, Z.H., Li, J.J., Cao, J.N., Zhang, J., Chung, H.H., Shi, Y.H.: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems. IEEE Trans. Cybern. 43(2), 445–463 (2013)CrossRef
    13.Sanchez, M.S., Ortiz, M.C., Sarabia, L.A.: Selection of nearly orthogonal blocks in ‘ad-hoc’ experimental designs. In: 8th Colloquium on Chemiometricum Mediterraneum (CCM), vol. 133, pp. 109–120 (2014)
    14.Liu, S.H., Ye, W.H., Lou, P.H., Tang, D.B.: Structural dynamic optimization for carriage of gantry machining center using orthogonal experimental design and response surface method. J. Chin. Soc. Mech. Eng. 33(3), 211–219 (2012)
    15.Li, H., Zhang, Q.F.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)CrossRef
    16.Zhao, S.Z., Suganthan, P.N., Zhang, Q.F.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)CrossRef
    17.Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8, 149–172 (2000)CrossRef
    18.Coello, C.A.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of Congress Evolutionary Computation, pp. 1051–1056 (2002)
    19.Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)CrossRef
    20.Sierra, M.S., Coello C.A.C.: Improving PSO-based multiobjective optimization using crowding, mutation and ɛ-Dominance. In: Proceedings of Evolutionary Multi-Criterion Optimization, pp. 505–519 (2005)
    21.Friedrich, T., Horoba, C., Neumann, F.: Multiplicative approximations and the hypervolume indicator. In: Proceedings of 2009 Genetic and Evolutionary Computation Conference, pp. 571–578 (2009)
    22.Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRef
    23.Asadzadeh, M., Tolson, B.: Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization. Eng. Optim. 45(12), 1489–1509 (2013)MathSciNet CrossRef
    24.Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)CrossRef
    25.Zhang, Q.F., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRef
    26.Nebro, A.J., Durillo, J.J.: A study of the parallelization of the multi-objective metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 303–317. Springer, Heidelberg (2010)CrossRef
    27.Li, H., Zhang, Q.F.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)CrossRef
    28.Zhao, S.Z., Suganthan, P.N., Zhang, Q.F.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)CrossRef
    29.Sindhya, K., Miettinen, K., Deb, K.: A hybrid framework for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 17(4), 495–511 (2012)CrossRef MATH
    30.Tan, Y.Y., Jiao, Y.C., Li, H., Wang, X.K.: MOEA/D plus uniform design: a new version of MOEA/D for optimization problems with many objectives. Comput. Oper. Res. 40(6), 1648–1660 (2013)MathSciNet CrossRef
    31.Jan, M.A., Khanum, R.A.: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D. Appl. Soft Comput. 13(1), 128–148 (2013)CrossRef
    32.Chang, P.C., Chen, S.H., Zhang, Q.F., Lin, J.L.: MOEA/D for flowshop scheduling problems. In: IEEE Congress on Evolutionary Computation, CEC 2008, pp. 1433–1438 (2008)
    33.Konstantinidism, A., Charalambous, C., Zhou, A., Zhang, Q.F.: Multi-objective mobile agent-based sensor network routing using MOEA/D. In: IEEE Congress on Evolutionary Computation, CEC 2010, pp. 1–8 (2010)
    34.Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1998)CrossRef MATH
    35.Tekinalp, O., Karsli, G.: A new multiobjective simulated annealing algorithm. J. Global Optim. 39(1), 49–77 (2007)MathSciNet CrossRef MATH
    36.Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2010)CrossRef
    37.Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)MATH
    38.Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)MATH
    39.Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)CrossRef MATH
  • 作者单位:Cai Dai (15)
    Xiujuan Lei (15)
    Xiaofang Guo (16)

    15. College of Computer Science, Shaanxi Normal University, Xi’an, 710062, China
    16. School of Science, Xi’an Technological University, Xi’an, Shaanxi, China
  • 丛书名:Intelligent Computing Theories and Application
  • ISBN:978-3-319-42294-7
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:9772
文摘
Research on multi-objective optimization problems (MOPs) becomes one of the hottest topics of intelligent computation. The diversity of obtained solutions is of great importance for multi-objective evolutionary algorithms. To this end, in this paper, a novel fitness function based on decomposition is proposed to help solutions converge toward to the Pareto optimal solutions and maintain the diversity of solutions. First, the objective space is decomposed in a set of sub-regions based on a set of direction vectors and obtained solutions are classified. Then, for an obtained solution, the size of the class which contains the solution and an aggregation function value of the solution are used to calculate the fitness value of the solution. Aggregation function which decides whether the target space is divided evenly plays a very important role in the fitness function. A hyperellipsoidal function is designed for any-objective problems. The proposed algorithm has been compared with NSGAII and MOEA/D on various continuous test problems. Experimental results show that the proposed algorithm can find more accurate Pareto front with better diversity in most problems, and the hyperellipsoidal function works better than the weighted Tchebycheff.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.