Monitoring of mercury and other metals mobility by sequential fractionation in soils nearby an abandoned chlor-alkali plant in Managua (Nicaragua)
详细信息    查看全文
  • 作者:Rodolfo Fernández-Martínez ; Belén Gómez-Mancebo…
  • 关键词:Mercury ; Chlor ; alkali plant ; Partitioning ; Fractionation
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:75
  • 期:6
  • 全文大小:1,063 KB
  • 参考文献:Adaikpoh EO (2011) Metal fractionation in soil profiles in Umutu oil field, Northwest Niger Delta Nigeria. Int J Chem 3:57–67. doi:10.​5539/​ijc.​v3n1p57 CrossRef
    Beccaluva L, Digirolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman volcanic province, Italy. Lithos 26:191–221. doi:10.​1016/​0024-4937(91)90029-k CrossRef
    Biester H, Gosar M, Muller G (1999) Mercury speciation in tailings of the Idrija mercury mine. J Geochem Explor 65:195–204. doi:10.​1016/​S0375-6742(99)00027-8 CrossRef
    Biester H, Muller G, Scholer HF (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191–203. doi:10.​1016/​S0048-9697(01)00885-3 CrossRef
    Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248. doi:10.​1016/​s0003-2670(02)01550-7 CrossRef
    Cherniak DJ, Watson EB (1994) A study of strontium difussion in plagioclase using a Rutherford backscattering spectroscopy. Geochim Cosmochim Acta 58:5179–5190. doi:10.​1016/​0016-7037(94)90303-4 CrossRef
    Chon HT, Ahn JS, Jung MC (1998) Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul, Korea. Environ Geochem Health 20:77–86. doi:10.​1023/​a:​1006593708464 CrossRef
    Climate-Nicaragua (2015). http://​www.​climatestotravel​.​com/​Climate/​Nicaragua . Accessed 15 Nov 2015
    Colombo MJ, Ha JY, Reinfelder JR, Barkay T, Yee N (2013) Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132. Geochim Cosmochim Acta 112:166–177. doi:10.​1016/​j.​gca.​2013.​03.​001 CrossRef
    Di Palma L, Mancini D, Petrucci E (2012) Experimental assessment of chromium mobilization from polluted soil by washing. In: Bosicon 2012: 3rd international conference on contaminated sites remediation, vol 28. Chemical Engineering Transactions, pp 145–150. doi:10.​3303/​cet1228025
    Digiulio RT, Ryan EA (1987) Mercury in soils, sediments, and clams from a North-Carolina peatland. Water Air Soil Pollut 33:205–219. doi:10.​1007/​BF00191389 CrossRef
    Ebinghaus R et al (1999) International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland. Atmos Environ 33:3063–3073. doi:10.​1016/​s1352-2310(98)00119-8 CrossRef
    Erzen NK, Stupar J (2003) Fractionation of chromium in soils treated with aqueous solutions of Cr(VI) and Cr(III). Acta Chim Slov 50:67–81. doi:10.​1039/​A909597G
    Fernández-Martínez R (2006) Desarrollo y aplicación de nuevas metodologías para el estudio del fraccionamiento y movilidad del mercurio en muestras medioambientales. Thesis Dissertation, Universidad Autónoma de Madrid
    Fernandez-Martinez R, Rucandio I (2013) Assessment of a sequential extraction method to evaluate mercury mobility and geochemistry in solid environmental samples. Ecotoxicol Environ Saf 97(196–203):2013. doi:10.​1016/​j.​ecoenv.​07.​013
    Fernandez-Martinez R, Rucandio I (2014) Total mercury, organic mercury and mercury fractionation in soil profiles from the Almaden mercury mine area. Environ Sci Processes Impacts 16:333–340. doi:10.​1039/​c3em00445g CrossRef
    Feyte S, Tessier A, Gobeil C, Cossa D (2010) In situ adsorption of mercury, methylmercury and other elements by iron oxyhydroxides and organic matter in lake sediments. Appl Geochem 25:984–995. doi:10.​1016/​j.​apgeochem.​2010.​04.​005 CrossRef
    Frentiu T, Pintican BP, Butaciu S, Mihaltan AI, Ponta M, Frentiu M (2013) Determination, speciation and distribution of mercury in soil in the surroundings of a former chlor-alkali plant: assessment of sequential extraction procedure and analytical technique. Chem Cent J 7:178. doi:10.​1186/​1752-153x-7-178 CrossRef
    Fuhrmann M, Melamed D, Kalb PD, Adams JW, Milian LW (2002) Sulfur polymer solidification/stabilization of elemental mercury waste. Waste Manag 22:327–333. doi:10.​1016/​s0956-053x(01)00057-5 CrossRef
    Fytianos K, Lourantou A (2004) Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environ Int 30:11–17. doi:10.​1016/​s0160-4120(03)00143-0 CrossRef
    Garron C, Gagne F, Ernst W, Julien G, Bernier M, Caldwell C (2005) Mercury contamination of marine sediments and blue mussels (Mytilus edulis) in the vicinity of a mercury cell chlor-alkali plant in Dalhousie, New Brunswick, Canada. Water Qual Res J Can 40:1–15
    Gray JE, Hines ME, Higueras PL, Adatto I, Lasorsa BK (2004) Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almaden Mining District, Spain. Environ Sci Technol 38:4285–4292. doi:10.​1021/​es040359d CrossRef
    Groen JC, Craig JR (1994) The inorganic geochemistry of coal, petroleum, and their gasification/combustion products. Fuel Process Technol 40:15–48. doi:10.​1016/​0378-3820(94)90033-7 CrossRef
    Han Y et al (2003) Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal Bioanal Chem 375:428–436. doi:10.​1007/​s00216-002-1701-4
    Hassan A et al (1981) Mercury-poisoning in Nicaragua—a case study of the export of environmental and occupational-health hazards by a Multinational-Corporation. Int J Health Serv 11:221–226. doi:10.​2190/​n9y9-ymu2-d6r1-lpyp CrossRef
    Hintelmann H, Wilken RD (1995) Levels of total and methylmercury compounds in sediments of the pôlluted Elbe River—influence of seasonally and spatially varying environmental-factors. Sci Total Environ 166:1–10. doi:10.​1016/​0048-9697(95)04506-v CrossRef
    Hissler C, Probst JL (2006) Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: the important trapping role of the organic matter. Sci Total Environ 361:163–178. doi:10.​1016/​j.​scitotenv.​2005.​05.​023 CrossRef
    Hu HY et al (2013) Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat Geosci 6:751–754. doi:10.​1038/​ngeo1894 CrossRef
    Imperato M, Adamo P, Naimo D, Arienzo M, Stanzione D, Violante P (2003) Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ Pollut 124:247–256. doi:10.​1016/​s0269-7491(02)00478-5 CrossRef
    Jang M, Hwang JS, Choi SI, Park JK (2005) Remediation of arsenic-contaminated soils and washing effluents. Chemosphere 60:344–354. doi:10.​1016/​j.​chemosphere.​2004.​12.​018 CrossRef
    Kabala C, Singh RR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492. doi:10.​2134/​jeq2001.​302485x CrossRef
    Kabata-Pendías APH (ed) (1992) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton
    Lacayo M, Cruz A, Lacayo J, Fomsgaard I (1991) Mercury contamination in Lake Xolotlan (Nicaragua) In: International association of theoretical and applied limnology—proceedings, Vol 24, Pt 2, vol 24. International Association of Theoretical and Applied Limnology—Proceedings, pp 1174–1177
    Li JH, Lu Y, Shim HJ, Deng XL, Lian J, Jia ZL, Li JH (2010) Use of the BCR sequential extraction procedure for the study of metal availability to plants. J Environ Monit 12:466–471. doi:10.​1039/​b916389a CrossRef
    Mahanta MJ, Bhattacharyya KG (2011) Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environ Monit Assess 173:221–240. doi:10.​1007/​s10661-010-1383-x CrossRef
    Martian-Doimeadios RCR, Wasserman JC, Bermejo LFG, Amouroux D, Nevado JJB, Donard OFX (2000) Chemical availability of mercury in stream sediments from the Almaden area, Spain. J Environ Monit 2:360–366CrossRef
    McCrary JK, Castro M, McKaye KR (2006) Mercury in fish from two Nicaraguan lakes: a recommendation for increased monitoring of fish for international commerce. Environ Pollut 141:513–518. doi:10.​1016/​j.​envpol.​2005.​08.​062 CrossRef
    Mester Z, Cremisini C, Ghiara E, Morabito R (1998) Comparison of two sequential extraction procedures for metal fractionation in sediment samples. Anal Chim Acta 359:133–142. doi:10.​1016/​S0003-2670(97)00687-9 CrossRef
    Muller K, Daus B, Morgenstern P, Wennrich R (2007) Mobilization of antimony and arsenic in soil and sediment samples—evaluation of different leaching procedures. Water Air Soil Pollut 183:427–436. doi:10.​1007/​s11270-007-9391-3 CrossRef
    Musta B, Fitria H, Soehady W, Tahir S (2008) Geochemical characterization of volcanic soils from Tawau, Sabah. Bull Geol Soc Malaisya 54:33–36. doi:10.​7186/​bgsm2008006
    Neculita CM, Zagury GJ, Deschenes L (2005) Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. J Environ Qual 34:255–262. doi:10.​2134/​jeq2005.​0255
    Panyametheekul S (2004) An operationally defined method to determine the speciation of mercury. Environ Geochem Health 26:51–57. doi:10.​1023/​B:​EGAH.​0000020967.​03217.​5f CrossRef
    Ramos L, Hernandez LM, Gonzalez MJ (1994) Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Donana-National-Park. J Environ Qual 23:50–57. doi:10.​2134/​jeq1994.​0047242500230001​0009x CrossRef
    Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81(1369–1377):2010. doi:10.​1016/​j.​chemosphere.​09.​030
    Revis NW, Osborne TR, Sedgley D, King A (1989) Quantitative method for determining the concentration of mercury(II) sulfide in soils and sediments. Analyst 114:823–825. doi:10.​1039/​AN9891400823 CrossRef
    Ruggieri F et al (2012) Contribution of volcanic ashes to the regional geochemical balance: the 2008 eruption of Chaiten volcano, Southern Chile. Sci Total Environ 425:75–88. doi:10.​1016/​j.​scitotenv.​2012.​03.​011 CrossRef
    Sakamoto H, Tomiyasu T, Yonehara N (1992) Differential determination of organic mercury, mercury(II) oxide and mercury(II) sulfide in sediments by cold vapor atomic-absorption spectrometry. Anal Sci 8:35–39CrossRef
    Shoji S, Nanzyo M, Dahlgren RA (1994) Volcanic ash soils: genesis, properties and utilization. Elsevier, Amsterdam
    Sowder AG, Bertsch PM, Morris PJ (2003) Partitioning and availability of uranium and nickel in contaminated riparian sediments. J Environ Qual 32:885–898. doi:10.​2134/​jeq2003.​8850 CrossRef
    Stevenson JWL (ed) (1982) Humus chemistry: genesis, composition, reactions. Wiley, New York
    Stockdale A, Davison W, Zhang H, Hamilton-Taylor J (2010) The association of cobalt with iron and manganese (oxyhydr)oxides in marine sediment. Aquat Geochem 16:575–585. doi:10.​1007/​s10498-010-9092-1 CrossRef
    Tongtavee N, Shiowatana J, McLaren RG, Buanuam J (2005) Evaluation of distribution and chemical associations between cobalt and manganese in soils by continuous-flow sequential extraction. Commun Soil Sci Plant Anal 36:2839–2855. doi:10.​1080/​0010362050030602​3 CrossRef
    USEPA (1997) Mercury study report to congress. Volume III: Fate and transport of mercury in the Environment Office of Air Quality Planning and Standards. US Environmental Protection Agency (USEPA), Washington, DC
    Wyrick B (1981) Chemical plant’s poison inflames a nation, part VIII: hazards for export. Newsday, USA
    Xiao WD, Zhang YB, Li TQ, Chen B, Wang H, He ZL, Yang XE (2012) Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties. J Environ Qual 41:1452–1458. doi:10.​2134/​jeq2012.​0061 CrossRef
    Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30:769–783. doi:10.​1016/​j.​envint.​2004.​01.​001 CrossRef
  • 作者单位:Rodolfo Fernández-Martínez (1)
    Belén Gómez-Mancebo (1)
    Emilio J. Peña (2)
    Pilar Galán (1)
    Akito Matsuyama (3)
    Fernando García (1)
    Isabel Rucandio (1)

    1. Spectroscopy Unit, Chemical Division, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040, Madrid, Spain
    2. Nicaraguan Research Center for Aquatic Resources of the National Autonomous University of Nicaragua (CIRA/UNAN), Managua, Nicaragua
    3. National Institute for Minamata Disease, Minamata, Japan
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Lake Xolotlán (Nicaragua) is an important industrial area including heavy industries such as a fuel refinery and numerous industries that discharge their effluents to the lake. Mercury distribution was studied in soil samples from six different sites close to an old chlor-alkali plant (CAP) which has historically released mercury wastes to the lake and its surroundings. A Hg-specific sequential extraction procedure was used to assess Hg partitioning. Hg content was subdivided in operationally defined fractions named as labile mercury species, humic and fulvic complexes, elemental Hg and bound to crystalline oxides and bound to sulphide Hg and refractory species. The total mercury concentrations ranged between 1 and 123 mg kg−1. Sequential extractions revealed that both humic and fulvic complexes and elemental Hg constituted the major forms of mercury in the most samples. Both fractions are related with the accumulation of mercury from both atmospheric deposition and sewage outflow. Moreover, accumulation of the elemental Hg in these soils decreased with the increasing distance from the CAP. In addition, the study of the distribution of other elements revealed a remarkable availability of Al, Ba, Ca, Fe, Pb, Sr, V and Zn that are commonly related to petroleum treatment and combustion. This suggests that these soils are also affected by the releasing of other pollutants from a nearby refinery.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.