Gradual pediocin PA-1 resistance in Enterococcus faecalis confers cross-protection to diverse pore-forming cationic antimicrobial peptides displaying changes in cell wall and mannose PTS expression
详细信息    查看全文
  • 作者:Rashmi Kumariya ; Shiv Kumar Sood ; Yudhishthir Singh Rajput…
  • 关键词:Enterococcus faecalis ; pediocin PA ; 1 ; cationic antimicrobial peptides ; resistance ; permeability barrier
  • 刊名:Annals of Microbiology
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:65
  • 期:2
  • 页码:721-732
  • 全文大小:1,486 KB
  • 参考文献:Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century - a clinical super-challenge. N Engl J Med 360:439鈥?43View Article PubMed
    Arias CA, Panesso D, McGrath DM, Qin X, Mojica MF, Miller C, Diaz L, Tran TT, Rincon S, Barbu EM, Reyes J, Roh JH, Lobos E, Sodergren E, Pasqualini R, Arap W, Quinn JP, Shamoo Y, Murray BE, Weinstock GM (2011) Genetic basis for in vivo daptomycin resistance in enterococci. New Engl J Med 365:892鈥?00View Article PubMed Central PubMed
    Arous S, Dalet K, Hechard Y (2004) Involvement of the mpo operon in resistance to class IIa bacteriocins in Listeria monocytogenes. FEMS Microbiol Lett 238(1):37鈥?1PubMed
    Baldassarri L, Cecchini R, Bertuccini L, Ammendolia MG, Iosi F, Arciola CR, Montanaro L, Di Rosa R, Gherardi G, Dicuonzo G, Orefici G, Creti R (2001) Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med Microbiol Immunol (Berlin) 190:113鈥?20
    Butler MT, Qingfeng W, Harshey RM (2010) Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci U S A 107:3776鈥?781View Article PubMed Central PubMed
    Cabo ML, Murado MA, Gonzalez MP, Pastoriza L (1999) A method for bacteriocin quantification. J Appl Microbiol 87:907鈥?14View Article PubMed
    Calvez S, Rince A, Auffray Y, Prevost H, Drider D (2007) Identification of new genes associated with intermediate resistance of Enterococcus faecalis to divercin V41, a pediocin-like bacteriocin. Microbiology 153:1609鈥?618View Article PubMed
    Cotter PD, Hill C, Ross P (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777鈥?88View Article PubMed
    Dalet K, Cenatiempo Y, Cossart P, Hechard Y (2001) A 蟽54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263鈥?269PubMed
    Dover RS, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y (2012) D-Alanylation of lipoteichoic acids confers resistance to cationic peptides in Group B Streptococcus by increasing the cell wall density. PLoS Pathog 8(9):e1002891View Article
    Dykes GA, Hastings JW (1998) Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett Appl Microbiol 26(1):5鈥?View Article PubMed
    Fabretti F, Theilacker C, Baldassari L, Kaczynski Z, Kropec A, Holst O, Huebner J (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74(7):4164鈥?171View Article PubMed Central PubMed
    Fimland G, Johnsen L, Axelsson L, Brurberg MB, Nes IF, Eijsink VGH, Nissen-Meyer A (2000) A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J Bacteriol 198(9):2643鈥?648View Article
    Gomez JAL, Hendrickx APA, Willems RJ, Top J, Sava I, Huebner J, Witte W, Werner G (2011) Intra- and interspecies genomic transfer of the Enterococcus faecalis pathogenicity island. PLoS One 6(4):e16720View Article
    Gravesen A, Jydegaard Axelsen AM, Mendes da Silva J, Hansen TB, Knochel S (2002a) Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Appl Environ Microbiol 68:756鈥?64View Article PubMed Central PubMed
    Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jansch L, Hechard Y, Hastings JW, Knochel S (2002b) High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148:2361鈥?369PubMed
    Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317鈥?323PubMed Central PubMed
    Hayat MA (2000) Principles and techniques of electron microscopy: biological applications, 4th edn. Cambridge University Press, Cambridge, United Kingdom
    Hechard Y, Pelletier C, Cenatiempo Y, Frere J (2001) Analysis of 蟽54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575鈥?580PubMed
    Jacquet T, Cailliez-Grimal C, Borges F, Gaiani C, Francius G, Duval JFL, Waldvogel Y, Revol-Junelles (2012) Surface properties of bacteria sensitive and resistant to the class IIa carnobacteriocin Cbn BM1. J Appl Microbiol 112(2):372鈥?82View Article PubMed
    Johnsen L, Fimland G, Nissen-Meyer J (2005) The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 280(10):9243鈥?250View Article PubMed
    Kahovcova J, Odavic R (1969) A simple method for the quantitative analysis of phospholipids separated by thin layer chromatography. J Chromatogr A 40:90鈥?6View Article
    Koch S, Hufnagel M, Theilacker C, Huebner J (2004) Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 22:822鈥?30
    McBride SM, Sonenshein AL (2011) The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology 157:1457鈥?465View Article PubMed Central PubMed
    McBride SM, Fischetti VA, LeBlanc DJ, Moellering RC, Gilmore MS (2007) Genetic diversity among Enterococcus faecalis. PLoS One 7:e582View Article
    Mehla J, Sood SK (2011) Substantiation of Enterococcus faecalis of dose-dependent resistance and cross-resistance to pore-forming antimicrobial peptides by use of a polydiacetylene-based colorimetric assay. Appl Environ Microbiol 77(3):786鈥?93View Article PubMed Central PubMed
    Mehla J, Sood SK (2013) Connecting membrane fluidity and surface charge to pore-forming antimicrobial peptides resistance by an ANN-based predictive model. Appl Microbiol Biotechnol 97(10):4377鈥?384View Article PubMed
    Mishra NN, Bayer AS, Tran TT, Shamoo Y, Mileykovskaya E, Dowhan W, Guan Z, Arias CA (2012) Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS One 7(8):e49358View Article
    Moll GN, Clark J, Chan WC, Bycroft BW, Roberts GC, Konings WN, Driessen AJ (1997) Role of transmembrane pH gradient and membrane binding in nisin pore formation. J Bacteriol 179(1):135鈥?40PubMed Central PubMed
    Naghmouchi K, Kheadr E, Lacroix C, Fliss I (2007) Class I/class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes. Food Microbiol 24:718鈥?27
    Nes IF, Diep DB, Holo H (2007) Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol 189(4):1189鈥?198View Article PubMed Central PubMed
    Opsata M, Nes IF, Holo H (2010) Class IIa bacteriocin resistance in Enterococcus faecalis V583: The mannose PTS operon mediates global transcriptional responses. BMC Microbiol 10:224View Article PubMed Central PubMed
    Park SC, Kim JY, Shin SO, Jeong CY, Kim MH, Shin SY, Cheong GW, Park Y, Hahm KS (2006) Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy. Biochem Biophys Res Commun 343:222鈥?28View Article PubMed
    Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071鈥?074View Article PubMed
    Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529鈥?36View Article PubMed
    Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides. J Biol Chem 274:8405鈥?410View Article PubMed
    Pollack JH, Neuhaus FC (1994) Changes in wall teichoic acid during the rod-sphere transition of Bacillus subtilis. J Bacteriol 176:7252鈥?259PubMed Central PubMed
    Ramnath M, Arous S, Gravesen A, Hastings JW, Hechard Y (2004) Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology 150(8):2663鈥?668View Article PubMed
    Reifsteck F, Wee S, Wilkinson BJ (1987) Hydrophobicity-hydrophilicity of staphylococci. J Med Microbiol 24:65鈥?3View Article PubMed
    Rekhif N, Atrih A, Lefebvre G (1994) Selection and properties of spontaneous mutants of Listeria monocytogenes ATCC 15313 resistant to different bacteriocins produced by lactic acid bacteria strains. Curr Microbiol 28:237鈥?41View Article
    Sakayori Y, Muramatsu M, Hanada S, Kamagata Y, Kawamoto S, Shima J (2003) Characterization of Enterococcus faecium mutants resistant to mundticin KS, a class IIa bacteriocin. Microbiology 149:2901鈥?908View Article PubMed
    Sansom MS (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55:139鈥?35View Article PubMed
    Shepard BD, Gilmore MS (1999) Identification of aerobically and anaerobically induced genes in Enterococcus faecalis by random arbitrarily primed PCR. Appl Environ Microbiol 65(4):1470鈥?476PubMed Central PubMed
    Sood SK, Sinha PR (2003) Analysis of structure of YGNGV motif containing bacteriocins: A model for pore formation. Ind J Biotechnol 2:227鈥?35
    Sood SK, Vijay Simha B, Kumariya R, Garsa AK, Mehla J, Meena S, Lather P (2013) Highly specific culture-independent detection of YGNGV motif-containing pediocin-producing strains. Probiotics Antimicrob Prot 5:37鈥?2View Article
    Tessema GT, Moretro T, Snipen L, Axelsson L, Naterstad K (2011) Global transcriptional analysis of spontaneous sakacin P-resistant mutant strains of Listeria monocytogenes during growth on different sugars. PLoS One 6(1):e16192View Article PubMed Central PubMed
    Thippeswamy HS, Sood SK, Venkateswarlu R, Raj I (2009) Membranes of five-fold alamethicin-resistant Staphylococcus aureus, Enterococcus faecalis and Bacillus cereus show decreased interactions with alamethicin due to changes in membrane fluidity and surface charge. Ann Microbiol 59:593鈥?01View Article
    Vadyvaloo V, Arous S, Gravesen A, Hechard Y, Chauhan-Haubrock R, Hastings JW, Rautenbach M (2004a) Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 150(9):3025鈥?033View Article PubMed
    Vadyvaloo V, Snoep JL, Hastings JW, Rautenbach M (2004b) Physiological implications of class IIa bacteriocins resistance in Listeria monocytogenes. Microbiology 150(2):335鈥?40View Article PubMed
    Vijay Simha B, Sood SK, Kumariya R, Garsa AK (2012) Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceus NCDC 273 suitable for industrial application. Microbiol Res 167:544鈥?49View Article PubMed
    Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475鈥?485View Article PubMed Central PubMed
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389鈥?95View Article PubMed
  • 作者单位:Rashmi Kumariya (1)
    Shiv Kumar Sood (1)
    Yudhishthir Singh Rajput (1)
    Anita Kumari Garsa (1)

    1. Division of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, 132001, India
  • 刊物主题:Microbiology; Microbial Genetics and Genomics; Microbial Ecology; Fungus Genetics; Medical Microbiology; Applied Microbiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-2044
文摘
Due to innate and acquired resistance in Enterococcus faecalis against most antibiotics, identification of new alternatives has increased interest in diverse populations of potent cationic antimicrobial peptides (CAMPs) for treatment and natural food biopreservation. The CAMPs, after crossing the cell wall to the periplasmic space, kill their target strain by forming pores in the cell membrane. However, reports of resistance against these CAMPs necessitated the understanding of step(s) interfered with while acquiring this resistance, for designing effective CAMP analogs. In this direction, we selected stable and gradual dose-dependent pediocin PA-1 single exposure resistant (Pedr) mutants of E. faecalis, which conferred cross-protection to diverse CAMPs, viz., HNP-1, nisin and alamethicin but not to polymyxin B, lysozyme and vancomycin. With these Pedr mutants of E. faecalis there was: a gradual neutralization in cell wall surface charge involving D-alanylation of wall teichoic acids (WTA) and lipoteichoic acids (LTA), increase in cell-surface hydrophobicity, increased cell aggregation and biofilm formation and ultra-structural changes in the cell wall, and a reduction of periplasmic space. In addition, a gradual decrease in expression of mannose PTS two (mpt) operon was also observed with distinct changes in growth rate achieving the same biomass production during the stationary phase. These results show that resistance to these CAMPs is not due to mpt directly acting as a docking molecule but due to changes in the cell wall, which increased the permeability barrier to CAMPs diffusion to reach the periplasmic space.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.