Perennial Grass Production Opportunities on Marginal Mediterranean Land
详细信息    查看全文
  • 作者:Ana Luisa Fernando ; Sara Boléo ; Bruno Barbosa ; Jorge Costa…
  • 关键词:Perennial grasses ; Sustainability ; Environmental impacts ; Bioenergy ; Marginal land ; Mediterranean region
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:4
  • 页码:1523-1537
  • 全文大小:1,139 KB
  • 参考文献:1.European Commission (2014) State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU, SWD(2014) 259 final. Brussels. p.33
    2.Alexopoulou E, Christou M, Cosentino SL et al (2012) Perennial grasses: important biomass source feedstock for Bio-based products and bioenergy. 20th Eur. Biomass Conf. Exhib. 18-2 June 2012. Milano, pp 201-06. doi:10.-071/-0thEUBCE2012-1CO.-.-
    3.European Commission (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union, 5 June 2009, 140:16-2. doi:10.-000/-7252555.?L_-009.-40.?eng
    4.Dauber J, Brown C, Fernando AL et al (2012) Bioenergy from “surplus-land: environmental and socio-economic implications. BIORISK -Biodivers Ecosyst Risk Assess 7:5-0. doi:10.-897/?biorisk.-.-036
    5.Fernando AL, Duarte MP, Almeida J et al (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuels Bioprod Biorefin 4:594-04. doi:10.-002/?bbb CrossRef
    6.Fernando A, Duarte M, Almeida J et al (2011) Environmental pros and cons of energy crops cultivation in Europe. 19th Eur. Biomass Conf. Exhib. From Res. to Ind. Mark. Berlin, Germany, pp 38-2. doi:10.-071/-9thEUBCE2011-PD1.-
    7.Fernando AL, Boléo S, Barbosa B et al (2012) Perennial grasses: environmental benefits and constraints of its cultivation in Europes. 20th Eur Biomass Conf Exhib. 18-2 June 2012. Milano, pp 2092-094
    8.Zhang Y, Li Y, Jiang L et al (2011) Potential of perennial crop on environmental sustainability of agriculture. Procedia Environ Sci 10:1141-147. doi:10.-016/?j.?proenv.-011.-9.-82 CrossRef
    9.Barbero-Sierra C, Marques MJ, Ruíz-Pérez M (2013) The case of urban sprawl in Spain as an active and irreversible driving force for desertification. J Arid Environ 90:95-02. doi:10.-016/?j.?jaridenv.-012.-0.-14 CrossRef
    10.Portnov BA, Safriel UN (2004) Combating desertification in the Negev: dryland agriculture vs. dryland urbanization. J Arid Environ 56:659-80. doi:10.-016/?S0140-1963(03)00087-9 CrossRef
    11.Cherubini F, Bird ND, Cowie A et al (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434-47. doi:10.-016/?j.?resconrec.-009.-3.-13 CrossRef
    12.Rettenmaier N, Kop?en S, Gartner SO, Reinhardt GA (2010) Life cycle assessment of selected future energy crops for Europe. Biofuels Bioprod Biorefin 4:620-36. doi:10.-002/?bbb.-45 CrossRef
    13.Forte A, Zucaro A, Fagnano M et al (2015) LCA of Arundo donax L. lignocellulosic feedstock production under Mediterranean conditions. Biomass Bioenergy 73:32-7. doi:10.-016/?j.?biombioe.-014.-2.-05 CrossRef
    14.Zucaro A, Forte A, Fagnano M et al (2015) Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under mediterranean climate for biorefinery framework. Integr Environ Assess Manag 9999:1-. doi:10.-002/?ieam.-604
    15.Dale VH, Kline KL, Wiens J, Fargione J (2010) Biofuels: implications for land use and biodiversity. http://?www.?esa.?org/?biofuelsreports/-/span>
    16.Wicke B (2011) Bioenergy production on degraded and marginal land: assessing its potentials, economic performance, and environmental impacts for different settings and geographical scales. Utrecht. p. 203
    17.Gelfand I, Sahajpal R, Zhang X et al (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514-17. doi:10.-038/?nature11811 CrossRef PubMed
    18.Rettenmaier N, Harter R, Himmler H et al (2013) Environmental sustainability assessment of the BIOCORE biorefinery concept (D 7.5). Heidelberg. p. 188
    19.Rettenmaier N, Schmidt T, Al E (2015) Life cycle assessment of bioenergy and bio-based products from perennial grasses cultivated on marginal lands in the Mediterranean region. Bioenergy Re, this issue
    20.Metzger MJ, Bunce RGH, Jongman RHG et al (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549-63. doi:10.-111/?j.-466-822X.-005.-0190.?x CrossRef
    21.Rettenmaier N, Gartner S, Keller H, Al E (2015) WP 7 Integrated assessment of sustainability. Deliverable D 7.10: Final report on Taskd 7.1, 7.2 and 7.4. Part B: report on life cycle assessment (Task 7.2)
    22.Fernando AL, Boléo S, Barbosa B et al (2015) WP 6 environmental studies. Deliverable D 6.13: environmental impact assessment. Final report on Task 6.6
    23.Biewinga E, van der Bijl G (1996) Sustainability of energy crops in Europe. A methodology developed and applied, Centre for Agriculture and Environment, Utrecht, February, CLM 234, (1996), 209 pp
    24.Collins R, Kristensen P, Thyssen N (2009) Water resources across Europe—confronting water scarcity and drought. EEA Report 2/2009. doi:10.-800/-68
  • 作者单位:Ana Luisa Fernando (1)
    Sara Boléo (1)
    Bruno Barbosa (1) (2)
    Jorge Costa (1)
    Maria Paula Duarte (1)
    Andrea Monti (3)

    1. MEtRiCS, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
    2. Universidade Federal do Oeste da Bahia, Barreiras, Brazil
    3. Department of Agricultural Sciences, University of Bologna, Bologna, Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
An increasing global awareness that the supply and security of petroleum-based materials is diminishing, coupled with environmental concerns related to climate change, water availability, and soil degradation, has increased demand for more renewable, diversified, and sustainable agricultural production systems. The objective of this work was to determine if a biogenic approach, focused on producing perennial grasses on marginal Mediterranean land as feedstock for bioenergy or bio-based products, could reduce greenhouse gas (GHG) emissions without depleting soil nutrients, water supplies, or negatively impacting biological and landscape diversity. This study, funded by European Union (EU), was conducted under project optimization of perennial grasses for biomass production (OPTIMA) using environmental impact assessment (EIA) protocols to quantify local environmental impacts of producing perennial grasses, in the Mediterranean region. Different end uses were investigated and biogenic products were compared with conventional ones. The EIA assessment indicated that the biogenic system had low erodibility potential, reduced disturbance of soil properties, and minimal hydrological impacts. Less tillage and high biomass production supported biological and landscape diversity, but site-specific factors should be used to appropriately match the specific crop and location. We conclude that producing perennial grasses on marginal Mediterranean land is feasible and if appropriately managed will have relatively few environmental side effects. Keywords Perennial grasses Sustainability Environmental impacts Bioenergy Marginal land Mediterranean region
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.