Thermodynamics of the interaction of γ-cyclodextrin and tauro- and glyco-conjugated bile salts
详细信息    查看全文
  • 作者:René Holm (1)
    Christian Sch?nbeck (1) (2)
    Sune Askj?r (3)
    Peter Westh (2)
  • 关键词:Isothermal titration calorimetry ; Bile salts ; Complexation ; Cyclodextrin ; Gamma ; cyclodextrin ; Molecular modelling
  • 刊名:Journal of Inclusion Phenomena and Macrocyclic Chemistry
  • 出版年:2013
  • 出版时间:2 - February 2013
  • 年:2013
  • 卷:75
  • 期:1
  • 页码:223-233
  • 全文大小:698KB
  • 参考文献:1. Szejtli, J.: Cyclodextrin Technology. Kluwer, Dordrecht (1988)
    2. Loftsson, T., Brewster, M.E., Masson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2, 175-61 (2004) CrossRef
    3. Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release. 123, 78-9 (2007) CrossRef
    4. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug. Discov. 3, 1023-035 (2004) CrossRef
    5. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug. Deliv. Rev. 59, 645-66 (2007) CrossRef
    6. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. in vivo drug delivery. J. Pharm. Sci. 85, 1142-169 (1996) CrossRef
    7. Thompson, D.O.: Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug. Carrier. Syst. 14, 1-04 (1997) CrossRef
    8. Uekama, K.: Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 52, 900-15 (2004) CrossRef
    9. Westerberg, G., Wiklund, L.: β-cyclodextrin reduces bioavailability of orally administered [3H]benzo[a]pyrene in the rat. J. Pharm. Sci. 94, 114-19 (2005) CrossRef
    10. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045-076 (1998) CrossRef
    11. Ono, N., Hirayama, F., Arima, H., Uekama, K., Rytting, J.H.: Model analysis for oral absorption of a drug/cyclodextrin complex involving competitive inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 44, 06-3 (2003)
    12. Marshall, J.J.M.: Kinetic difference between hydrolyses of γ-cyclodextrin by human salivary and pancreatic α-amylase. BBA 661, 142-47 (1981) CrossRef
    13. Kondo, H., Nakatani, H., Hiromi, K.: In vitro action of human and porcine α-amylase on cyclo-malto-oligosaccharides. Carbohydr. Res. 204, 207-13 (1990) CrossRef
    14. Lipindski, C.A.: Drug-like properties and the causes of poorly solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235-49 (2000) CrossRef
    15. Cabrer, P.R., Alvarez-Parrilla, E., Al-Soufi, W., Meijide, F., Nú?ez, E.R., Tato, J.V.: Complexation of bile salts by natural cyclodextrins. Supramol. Chem. 15, 33-3 (2003) CrossRef
    16. Tan, Z.J., Zhu, X.X., Brown, G.R.: Formation of inclusion complexes of cyclodextrins with bile salt anions as determined by NMR titration studies. Langmuir 10, 1034-039 (1994) CrossRef
    17. Holm, R., Hartvig, R.A., Nicolajsen, H.V., Westh, P., ?stergaard, J.: Characterization of the complexation of tauro- and glyco-conjugated bile salts with γ-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin using affinity capillary electrophoresis. J. Incl. Phenom. Macrocycl. Chem. 61, 161-69 (2008) CrossRef
    18. Cooper, A., Nutley, M.A., Camilleri, P.: Microcalometry of chiral surfactant–cyclodextrin interactions. Anal. Chem. 70, 5024-028 (1998) CrossRef
    19. Abadie, C., Hug, M., Kübli, C., Gains, N.: Effect of cyclodextrins and undigested starch on the loss of chenodeoxycholate in the feces. Biochem. J. 229, 725-30 (1994)
    20. Alvaro, D., Cantatore, A., Attili, A.F., Gianni Corrandini, S., De Luca, C., Minervini, G., Di Blase, A., Angelico, M.: Relationships between bile salts hydrophilicity and phosphorlipid composition in bile of various animal species. Comp. Biochem. Physiol. 83B, 551-54 (1986)
    21. Schonbeck, C., Westh, P., Madsen, J.C., Larsen, K.L., Stade, L.W., Holm, R.: Methylated beta-cyclodextrins: influence of degree and pattern of substitution on the thermodynamics of complexation with tauro- and glyco-conjugated bile salts. Langmuir 27, 5832-841 (2011) CrossRef
    22. Chen, W., Chang, C.-E., Gilson, M.K.: Calculation of cyclodextrin binding affinities: energy, entropy, and implication for drug design. Biophys. J. 87, 3035-049 (2004) CrossRef
    23. Chang, C.E., Gilson, M.K.: Free energy, entropy, and induced fit in host-guest recognition: calculations with the second-generation mining minima algorithm. J. Am. Chem. Soc. 126, 13156-3164 (2004) CrossRef
    24. Molecular Operating Environment (MOE), Version 2006.08 [Computer Program]. Montreal (2002)
    25. Holm, R., Shi, W., Hartvig, R.A., Askj?r, S., Madsen, J.C., Westh, P.: Thermodynamics and structure of inclusion compounds of tauro- and glyco-conjugated bile salts and β-cyclodextrins. Phys. Chem. Chem. Phys. 11, 5070-078 (2009) CrossRef
    26. Chang, C.E., Chen, W., Gilson, M.K.: Ligand configurational entropy and protein binding. Proc. Natl Acad. Sci. USA 104, 1534-539 (2007) CrossRef
    27. Halgren, T.A.: Merck molecular force field. 1. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490-19 (1996) CrossRef
    28. Halgren, T.A.: Merck molecular force field. 2. MMFF94 van der waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem. 17, 520-52 (1996) CrossRef
    29. Halgren, T.A.: Merck molecular force field. 3. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem. 17, 553-86 (1996) CrossRef
    30. Halgren, T.A., Nachbar, R.B.: Merck molecular force field. 4. Conformational energies and geometries for MMFF94. J. Comput. Chem. 17, 587-15 (1996)
    31. Halgren, T.A.: Merck molecular force field. 5. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comput. Chem. 17, 616-41 (1996) CrossRef
    32. Halgren, T.A.: MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 20, 720-29 (1999) CrossRef
    33. Halgren, T.A.: MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comput. Chem. 20, 730-48 (1999) CrossRef
    34. Hofmann, A.F., Roda, A.: Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J. Lipid Res. 25, 1477-489 (1984)
    35. Roda, A., Hofmann, A.F., Mysels, K.J.: The influence of bile salt structure on self-association in aqueous solutions. J. Biol. Chem. 258, 6362-370 (1983)
    36. Jana, P.K., Moulik, S.P.: Interaction of bile salts with hexadecyltrimethylammonium bromide and sodium dodecyl sulfate. J. Phys. Chem. 95, 9525-532 (1991) CrossRef
    37. Funasaki, N., Ueshiba, R., Hada, S., Neya, S.: Stepwise self-association of sodium taurocholate and taurodeoxycholate as revealed by chromatography. J. Phys. Chem. 98, 11541-1548 (1994) CrossRef
    38. Garidel, P., Hildebrand, A., Neubert, R., Blume, A.: Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimetry. Langmuir 16, 5267-275 (2000) CrossRef
    39. Schneider, H.-J., Hacket, F., Rüdiger, V.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755-785 (1998) CrossRef
    40. Holm, R., Madsen, J.C., Shi, W., Larsen, K.L., St?de, L.W., Westh, P.: Thermodynamics of complexation of tauro- and glyco-conjugated bile salts with two modified β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 69, 201-11 (2011) CrossRef
    41. Mucci, A., Schenetti, L., Vandelli, M.A., Ruozi, B., Salvioli, G., Forni, F.: Comparison between Roesy and 13C?NMR complexation shifts in deriving the geometry of inclusion compounds: a study on the interaction between hyodeoxycholic acid and 2-hydroxypropyl-β-cyclodextrin. Supramol. Chem. 12, 427-33 (2001) CrossRef
    42. Mucci, A., Vandelli, M.A., Salvioli, G., Malmusi, L., Forni, F., Schenetti, L.: Complexation of bile salts with 2-hydroxypropyl-β-cyclodextrin: a 13C?NMR study. Supramol. Chem. 7, 125-27 (1996) CrossRef
    43. Mucci, A., Schenetti, L., Salvioli, G., Ventura, P., Vandelli, M.A., Forni, F.: The interaction of biliar acids with 2-hydroxypropyl-β-cyclodextrin in solution and in the solid state. J. Incl. Phenom. Macrocycl. Chem. 26, 233-41 (1996) CrossRef
    44. Vandelli, M.A., Salvioli, G., Mucci, A., Panini, R., Malmusi, L., Forni, F.: 2-Hydroxypropyl-β-cyclodextrin complexation with ursodeoxycholic acid. Int. J. Pharm. 118, 77-3 (1995) CrossRef
    45. Vandelli, M.A., Ruozi, B., Forni, F.: A solution and solid state study on 2-hydroxypropyl-β-cyclodextrin complexation with hyodeoxycholic acid. J. Incl. Phenom. Macrocycl. Chem. 37, 237-51 (2000) CrossRef
    46. Holm, R., Nicolajsen, H.V., Hartvig, R.A., Westh, P., ?stergaard, J.: Complexation of tauro- and glyco-conjugated bile salts with three neutral β-cyclodextrins studied by affinity capillary electrophoresis. Electrophoresis 28, 3745-752 (2007) CrossRef
    47. Liu, L., Guo, Q.-X.: The driving force in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 42, 1-4 (2002) CrossRef
    48. Lumry, R.: On the interpretation of data from isothermal processes. Methods. Enzmol. 259, 628-20 (1995) CrossRef
    49. Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3-8 (1999) CrossRef
    50. Holm, R., Sch?nbeck, C., Askj?r, S., Jensen, H., Westh, P., ?stergaard, J.: Complexation of tauro- and glyco-conjugated bile salts with α-cyclodextrin and hydroxypropyl-α-cyclodextrin studied by affinity capillary electrophoresis and molecular modelling. J. Sep. Sci. 34, 3221-230 (2011) CrossRef
    51. Inoue, Y., Hakushi, T., Liu, Y., Tong, L.-H., Shen, B.-J., Jin, D.-S.: Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α, β and γ-cyclodextrins: enthalpy–entropy compensation. J. Am. Chem. Soc. 115, 475-81 (1993) CrossRef
    52. Inoue, Y., Lin, Y., Tong, L.-H., Shen, B.-J., Jin, D.-S.: Thermodynamics of molecular recognition by cyclodextrins. 2. Calorimetric titration of inclusion complexation with modified β-cyclodextrins. Enthalpy–entropy compensation in host-guest complexation: from ionophone to cyclodextrin and cyclophane. J. Am. Chem. Soc. 115, 10637-0644 (1993) CrossRef
    53. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875-917 (1998) CrossRef
    54. Rekharsky, M.V., Mayhew, M.P., Goldberg, R.N., Ross, P.D., Yamashoji, Y., Inoue, Y.: Thermodynamic and nuclear magnetic resonance study of the reactions of alpha- and beta-cyclodextrin with acids, aliphatic amines, and cyclic alcohols. J. Phys. Chem. B 101, 87-00 (1997) CrossRef
    55. Costas, M., Kronberg, B., Silveston, R.: General thermodynamic analysis of the dissolution of nonpolar molecules into water–origin of hydrophobicity. J. Chem. Soc. Faraday Trans. 90, 1513-522 (1994) CrossRef
  • 作者单位:René Holm (1)
    Christian Sch?nbeck (1) (2)
    Sune Askj?r (3)
    Peter Westh (2)

    1. Preformulation, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
    2. NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
    3. Computational Chemistry, H. Lundbeck A/S, Ottilavej 9, 2500, Valby, Denmark
  • ISSN:1573-1111
文摘
The structural differences in the interaction between natural γ-cyclodextrin and bile salts common in rat, dog and man was were investigated by 1H-ROESY and 13C NMR and molecular modeling and the thermodynamic parameters of the reaction by isothermal titration calorimetry. The γ-cyclodextrin was selected based upon its frequent use in drug formulation as excipients to facilitate the solubilisation of drug substances with low aqueous solubility upon oral administration. The NMR studies and the molecular modeling demonstrated an interaction with inclusion of the C-ring of the steroid body of the bile salt and partly inclusion of the B and D ring. A large variation was observed in the stability constants among the investigated bile salt. The variations in the enthalpic and entropic contributions to the overall Gibbs free energy and consequently the stability constants revealed structural differences between the bile salts, where bile salts with a hydroxyl group on C12 has a weaker interaction than the bile salts without the hydroxyl group. Based upon the theoretical calculations of the available surface area the differences observed in the entropic contribution seems to be mainly driven by dehydration effects.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.