Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
详细信息    查看全文
  • 作者:Petruta Oancea ; Viorica Meltzer
  • 关键词:tartrazine ; dyes ; photodegradation ; advanced oxidation process (AOP) ; water treatment
  • 刊名:Chemical Papers
  • 出版年:2014
  • 出版时间:January 2014
  • 年:2014
  • 卷:68
  • 期:1
  • 页码:105-111
  • 全文大小:260KB
  • 参考文献:1. Alvarez Cuesta, E., Alcover Sánchez, R., Sainz Martín, T., Anaya Turrientes, M., & García Rodríguez, D. (1981). Pharmaceutical preparations which contain tartrazine. / Allergologia et Immunopathologia (Madrid), / 9, 45-4. (in Spanish)
    2. Aleboyeh, A., Aleboyeh, H., & Moussa, Y. (2003). “Critical-effect of hydrogen peroxide in photochemical oxidative decolorization of dyes: Acid Orange 8, Acid Blue 74 and Methyl Orange. / Dyes and Pigments, / 57, 67-5. DOI: 10.1016/s0143-7208(03)00010-x. CrossRef
    3. Behnajady, M. A., Modirshahla, N., & Shokri, M. (2004). Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. / Chemosphere, / 55, 129-34. DOI: 10.1016/j.chemosphere.2003.10.054. CrossRef
    4. Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O 2 ?/sup> radicals in aqueous solution. / Journal of Physical and Chemical Reference Data, / 14, 1041-100. DOI: 10.1063/1.555739. CrossRef
    5. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O?/sup>) in aqueous solution. / Journal of Physical and Chemical Reference Data, / 17, 513-86. DOI: 10.1063/1.555805. CrossRef
    6. Daneshvar, N., Salari, D., & Aber, S. (2002). Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake. / Journal of Hazardous Materials, / B94, 49-1. DOI: 10.1016/s0304-3894(02)00054-7. CrossRef
    7. Daneshvar, N., Ashassi-Sorkhabi, H., & Tizpar, A. (2003). Decolorization of orange II by electrocoagulation method. / Separation and Purification Technology, / 31, 153-62. DOI: 10.1016/s1383-5866(02)00178-8. CrossRef
    8. Daneshvar, N., Rabbani, M., Modirshahla, N., & Behnajady, M. A. (2004). Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27(AR27). / Chemosphere, / 56, 895-00. DOI: 10.1016/j.chemosphere.2004.06.001. CrossRef
    9. Da Silva, C. R., Maniero, M. G., Rath, S., & Guim?raes, J. R. (2011). Antibacterial activity inhibition after the degradation of flumequine by UV/H2O2. / Journal of Advanced Oxidation and Technology, / 14, 106-14.
    10. El-Dein, A. M., Libra, J. A., & Wiesmann, U. (2003). Mechanism and kinetic model for the decolorization of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation. / Chemosphere, / 52, 1069-077. DOI: 10.1016/s0045-6535(03)00226-1. CrossRef
    11. Elmorsi, T. M., Riyad, Y. M., Mohamed, Z. H., & Abd El Bary, H. M. H. (2010). Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. / Journal of Hazardous Materials, / 174, 352-58. DOI: 10.1016/j.jhazmat.2009.09.057. CrossRef
    12. El Qada, E., Allen, S., & Walker, G. M. (2008). Adsorption of basic dyes from aqueous solution onto activated carbons. / Chemical Engineering Journal, / 135, 174-84. DOI: 10.1016/j.cej.2007.02.023. CrossRef
    13. Fragoso, C. T., Battisti, R., Miranda, C., & de Jesus, P. C. (2009). Kinetic of the degradation of C.I. Food Yellow 3 and C.I. Food Yellow 4 azo dyes by the oxidation with hydrogen peroxide. / Journal of Molecular Catalysis A: Chemical, / 301, 93-7. DOI: 10.1016/j.molcata.2008.11.014. CrossRef
    14. Gao, J., Wang, X., Hu, Z., Deng, H., Hou, J., Lu, X., & Kang, J. (2003). Plasma degradation of dyes in water with contact glow discharge electerolysis. / Water Research, / 37, 267-72. DOI: 10.1016/s0043-1354(02)00273-7. CrossRef
    15. Georgiou, D., Melidis, P., Aivasidis, A., & Gimouhopoulos, K. (2002). Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. / Dyes and Pigments, / 52, 69-8. DOI: 10.1016/s0143-7208(01)00078-x. CrossRef
    16. Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface. / Materials Science and Engineering C, / 31, 1062-067. DOI: 10.1016/j.msec.2011.03.006. CrossRef
    17. Gupta, V. K., Pathania, D., Agarwal, S., & Singh, P. (2012a). Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. / Journal of Hazardous Materials, / 243, 179-86. DOI: 10.1016/j.jhazmat.2012.10.018. CrossRef
    18. Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., & Sikarwar, S. (2012b). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. / Materials Science and Engineering C, / 32, 12-7. DOI: 10.1016/j.msec.2011.08.018. CrossRef
    19. Hatchard, C. G., & Parker, C. A. (1956). A new sensitive actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. / Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, / 235, 518-36. DOI: 10.1098/rspa.1956.0102. CrossRef
    20. Ince, N. H., Stefan, M. I., & Bolton, J. R. (1997). UV/H2O2 degradation and toxicity reduction of textile azo dye: remazol Black-B, a case study. / Journal of Advanced Oxididation Technologies, / 2, 442-48.
    21. Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2006). Biodegradation of azo dye C.I. Acid Red 88 by an anoxic-aerobic sequential bioreactor. / Dyes and Pigments, / 70, 1-. DOI: 10.1016/j.dyepig.2004.12.021. CrossRef
    22. Mittal, A., Kurup, L., & Mittal, J. (2007). Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers, / Journal of Hazardous Materials, / 146, 243-48. DOI: 10.1016/j.jhazmat.2006.12.012. CrossRef
    23. Modirshahla, N., & Behnajady, M. A. (2006). Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modelling. / Dyes and Pigments, / 70, 54-9. DOI: 10.1016/j.dyepig.2005.04.012. CrossRef
    24. Muruganandham, M., & Swaminathan, M. (2004). Photochemical oxidation of reactive azo dye with UV-H2O2 process. / Dyes and Pigments, / 62, 269-75. DOI: 10.1016/j.dyepig.2003.12.006. CrossRef
    25. Pagga, U. T., & Taeger, K. (1994). Development of a method for adsorption of dyestuffs on activated sludge. / Water Research, / 28, 1051-057. DOI: 10.1016/0043-1354(94)90190-2. CrossRef
    26. Patel, R., & Suresh, S. (2006). Decolourization of azo dyes using magnesium-palladium system. / Journal of Hazardous Materials, / B137, 1729-741. DOI: 10.1016/j.jhazmat.2006.05.019. CrossRef
    27. Rott, U., & Minke, R. (1999). Overview of wastewater treatment and recycling in the textile processing industry. / Water Science and Technology, / 40, 137-44. DOI: 10.1016/s0273-1223(99)00381-9. CrossRef
    28. Salem, M. A., & Gemeay, A. H. (2000). Kinetics of the oxidation of tartrazine with peroxydisulfate in the presence and absence of catalysts. / Monatshefte für Chemie, / 131, 117-29. DOI: 10.1007/s007060050013. CrossRef
    29. Shu, H. Y., Chang, M. C., & Fan, H. J. (2004). Decolorization of azo dye acid black 1 by the UV/H2O2 process and optimization of operating parameters. / Journal of Hazardous Materials, / B113, 201-08. DOI: 10.1016/j.jhazmat.2004.06.007. CrossRef
    30. Shu, H. Y., & Chang, M. C. (2005). Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. / Dyes and Pigments, / 65, 25-1. DOI: 10.1016/j.dyepig.2004.06.014. CrossRef
  • 作者单位:Petruta Oancea (1)
    Viorica Meltzer (1)

    1. Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta, 4-12, Bucharest, 030018, Romania
  • ISSN:1336-9075
文摘
In the present work, kinetics of tartrazine decay by UV irradiation and H2O2 photolysis, and the removal of total organic carbon (TOC) under specific experimental conditions was explored. Irradiation experiments were carried out using a photoreactor of original design with a low-pressure Hg vapour lamp. The photodegradation rate of tartrazine was optimised with respect to the H2O2 concentration and temperature for the constant dye concentration of 1.035 × 10? M. Tartrazine degradation and the removal of TOC followed the pseudo-first-order kinetics. The much higher k obs value for tartrazine degradation (7.91 × 10? s?) as compared with the TOC removal (2.3 × 10? s?) confirmed the presence of reaction intermediates in the solution.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.