THz photomixer with milled nanoelectrodes on LT-GaAs
详细信息    查看全文
  • 作者:Gediminas Seniutinas ; Gediminas Gervinskas ; Evan Constable…
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:117
  • 期:2
  • 页码:439-444
  • 全文大小:2,002 KB
  • 参考文献:1. N. Katzenellenbogen, D. Grischkowsky, Electrical characterization to 4 THz of N-and P-type GaAs using THz time-domain spectroscopy. Appl. Phys. Lett. 61(7), 840-42 (1992) CrossRef
    2. B. Fischer, H. Helm, P. Jepsen, Chemical recognition with broadband THz spectroscopy. Proc. IEEE 95(8), 1592-604 (2007) CrossRef
    3. W. Stillman, D. Veksler, T. Elkhatib, K. Salama, F. Guarin, M. Shur, Sub-terahertz testing of silicon MOSFET. Electron. Lett. 44(22), 1325-326 (2008) CrossRef
    4. B. Peter, S. St. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, A. Karellas, Development and testing of a single frequency terahertz imaging system for breast cancer detection. IEEE Trans. Terahertz Sci. Technol. 3(4), 374-86 (2013) CrossRef
    5. S. Preu, G. D?hler, S. Malzer, L. Wang, A. Gossard, Tunable, continuous-wave Terahertz photomixer sources and applications. J. Appl. Phys. 109, 061301 (2011) CrossRef
    6. H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner et al., Nano-antenna in a photoconductive photomixer for highly efficient continuous wave Terahertz emission. Sci. Rep. 3 (2013)
    7. C. Berry, M. Unlu, M. Hashemi, M. Jarrahi, Use of plasmonic gratings for enhancing the quantum efficiency of photoconductive Terahertz sources, in / 37th International Conference on IEEE Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2012, pp. 1- (2 012)
    8. C. Berry, M. Jarrahi, Terahertz generation using plasmonic photoconductive gratings. New J. Phys. 14(10), 105029 (2012) CrossRef
    9. C. Berry, N. Wang, M. Hashemi, M. Unlu, M. Jarrahi, Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun. 4, 1622 (2013) CrossRef
    10. K. Pitra, Z. Raida, H. Hartnagel, Design of circularly polarized Terahertz antenna with interdigital electrode photomixer, in / 7th European Conference on Antennas and Propagation (EuCAP), 2013, pp. 2431-434 (2013)
    11. S. Juodkazis, L. Rosa, Surface defect mediated electron hopping between nanoparticles separated by a nano-gap. Phys. Stat. Sol. Rapid Res. Lett. 4(10), 244-46 (2010) CrossRef
    12. L. Rosa, K. Sun, J. Szymanska, F.E. Hudson, A. Dzurak, A. Linden, S. Bauerdick, L. Peto, S. Juodkazis, Tailoring spectral position and width of field enhancement by ion-beam trimming of plasmonic nanoparticles. Phys. Stat. Sol. Rapid Res. Lett. 4(10), 262-64 (2010) CrossRef
    13. G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, S. Juodkazis, 3D nano-structures for laser nano-manipulation. Beilstein J. Nanotechnol. 4(1), 534-41 (2013) CrossRef
    14. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, T.E. Darcie, Nanoplasmonic terahertz photoconductive switch on GaAs. Nano Lett. 12(12), 6255-259 (2013) CrossRef
    15. G. Gervinskas, G. Seniutinas, L. Rosa, S. Juodkazis, Arrays of arbitrarily shaped nanoparticles: overlay-errorless direct ion write. Adv. Opt. Mat. 1(6), 456-59 (2013) CrossRef
    16. G. Gervinskas, G. Seniutinas, S. Juodkazis, Control of surface charge for high-fidelity nanostructuring of materials. Laser Photonics Rev., pp. 1-, (2013, online). doi:10.1002/lpor.201300093
    17. N. Zamdmer, Q. Hu, K. McIntosh, S. Verghese, Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias. Appl. Phys. Lett. 75(15), 2313-315 (1999) CrossRef
    18. E. Brown, K. McIntosh, F. Smith, K. Nichols, M. Manfra, C. Dennis, J. Mattia, Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer. Appl. Phys. Lett. 64(24), 3311-313 (1994) CrossRef
    19. V. ?vor?ík, O. Kvítek, O. Lyutakov, J. Siegel, Z. Kolská, Annealing of sputtered gold nano-structures. Appl. Phys. A 102(3), 747-51 (2011) CrossRef
    20. H. Liu, J. Ascencio, M. Perez-Alvarez, M. Yacaman, Melting behavior of nanometer sized gold isomers. Surf. Sci. 491(1), 88-8 (2001) CrossRef
    21. S.H. Yang, W. Berry, N. Wang, M.R. Hashemi, M. Jarrahi, Conference 8985: terahertz, rf, millimeter, and sub-millimeter-wave technology and applications vii. Tech. Summ. 1, 88 (2014)
    22. C. Zandonella, Terahertz imaging: T-ray specs. Nature 424(6950), 721-22 (2003) CrossRef
    23. P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, M. Hofmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein et al., Medical THz imaging: an investigation of histo-pathological samples. Phys. Med. Biol. 47(21), 3875 (2002) CrossRef
    24. W.E. Baughman, H. Yokus, S. Balci, D.S. Wilbert, P. Kung, S.M. Kim, Observation of hydrofluoric acid burns on osseous tissues by means of Terahertz spectroscopic imaging. IEEE Trans. Terahertz Sci. Technol. 3(4), 387-94 (2013) CrossRef
  • 作者单位:Gediminas Seniutinas (1) (2)
    Gediminas Gervinskas (1) (2)
    Evan Constable (3)
    Arūnas Krotkus (4)
    Gediminas Molis (5)
    Gintaras Valu?is (4)
    Roger A. Lewis (3)
    Saulius Juodkazis (1) (2)

    1. Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
    2. Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
    3. Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
    4. Center for Physical Sciences and Technology, Vilnius, 01108, Lithuania
    5. Teravil Ltd, Vilnius, 01108, Lithuania
  • ISSN:1432-0630
文摘
A terahertz (THz) photomixer: (i) a meander type antenna with integrated nanoelectrodes on (ii) a low temperature grown GaAs has been fabricated and characterized. It was designed for spectral range of 0.3-.4?THz where molecular fingerprinting and sensing are performed. By combination of electron beam lithography with post-processing using focused ion beam (FIB), milling the THz emitter was successfully fabricated. Nanogaps as small as 40?nm width in the active area of photomixer were milled by FIB. Nanocontacts enhance electric fields of the illuminated and THz radiation and contribute to a better collection of photo-electrons. THz emission was obtained and spectrally characterized.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.