2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers
详细信息    查看全文
  • 作者:Anselm J. Deninger ; A. Roggenbuck…
  • 关键词:Terahertz spectroscopy ; Frequency domain ; Distributed feedback lasers ; InGaAs photomixers ; Optoelectronics
  • 刊名:International Journal of Infrared and Millimeter Waves
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:36
  • 期:3
  • 页码:269-277
  • 全文大小:525 KB
  • 参考文献:1. G.H. D?hler, F. Renner, O. Klar, M. Eckardt, A. Schwanh?u?er, S. Malzer, D. Driscoll, M. Hanson, A.C. Gossard, G. Loata, T. L?ffler, H. Roskos, “THz-photomixer based on quasi-ballistic transport,- / Semicond. Sci. Technol., vol. 20, no. 7, pp. 178-190, 2005. CrossRef
    2. S. Preu, F.H. Renner, S. Malzer, G.H. D?hler, L.J. Wang, M. Hanson, A.C. Gossard, T.L.J. Wilkinson, E.R. Brown, “Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers,- / Appl. Phys. Lett., vol. 90, no. 21, pp., 212115-212117, 2007.
    3. S. Preu, G.H. D?hler, S. Malzer, L.J. Wang, and A.C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,- / J. Appl. Phys., vol. 109, pp. 61301-61356., 2011. CrossRef
    4. H.-G. Bach, A. Beling, G.G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,- / IEEE J. Quantum Electron., vol. 10, no. 4, pp. 668-672, 2004. CrossRef
    5. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,- / J. Infrared Milli. Terahz. Waves, vol. 32, no. 2, pp. 225-232, 2011. CrossRef
    6. T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, T. Furuta, “Uni-traveling-carrier photodiodes,-in: “Ultrafast Electronics and Optoelectronics,-M. Nuss and J. Bowers, eds., Vol. 13 of / OSA Trends in Optics and Photonics Series, paper UC3, 1997.
    7. H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, T. Ishibashi, “High-power photonic millimeter-wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,- / Proc. Inst. Elect. Eng. Optoelectron., vol. 150, pp. 138-142, 2003. CrossRef
    8. E. Rouvalis, C.C. Renaud, D.G. Moodie, M.J. Robertson, A.J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,- / Opt. Express, vol. 18, pp. 11105-11110, 2010. CrossRef
    9. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Künzel, D. Schmidt, H.-G. Bach, R. Kunkel, M. Schell, “Continuous wave terahertz systems exploiting 1.5 μm telecom technologies,- / Opt. Express, vol. 17, pp. 15001-15007, 2009. CrossRef
    10. T. G?bel, D. Stanze, B. Globisch, R.J.B. Dietz, H. Roehle, M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 dB signal-to-noise ratio and 3.5 terahertz bandwidth,- / Opt. Letters, vol. 38, no. 20, pp. 4197-4199, 2013. CrossRef
    11. E.R. Brown, K.A. McIntosh, K.B. Nichols, C.L. Dennis, “Photomixing up to 3.8 THz in low‐temperature‐grown GaAs,- / Appl. Phys. Lett., vol. 66, no. 3, pp. 285-287, 1995. CrossRef
    12. K.A. McIntosh, E.R. Brown, K.B. Nichols, O.B. McMahon, W.F. di Natale, T.M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,- / Appl. Phys. Lett., vol. 67, no. 26, pp. 3844-3846, 1995. CrossRef
    13. I.S. Gregory, M.J. Evans, H. Page, S. Malik, I. Farrer, H.E. Beere, “Analysis of photomixer receivers for continuous-wave terahertz radiation,- / Appl. Phys. Lett., vol. 91, no. 15, pp. 154103-154105, 2007. CrossRef
    14. J.R. Demers, R.T. Logan Jr., E.R. Brown, “An optically integrated coherent frequency-domain THz spectrometer with signal-to-noise ratio up to 80 dB,- / Microwave Photonics Tech. Digest, Victoria, Canada, pp. 92-5, 2007.
    15. A.J. Deninger, T. G?bel, D. Sch?nherr, T. Kinder, A. Roggenbuck, M. K?berle, F. Lison, T. Müller-Wirts, P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,- / Rev. Sci. Inst., vol. 79, no. 4, p
  • 作者单位:Anselm J. Deninger (1)
    A. Roggenbuck (1)
    S. Schindler (1)
    S. Preu (2)

    1. TOPTICA Photonics AG, Lochhamer Schlag 19, 82166, Gr?felfing, Germany
    2. Department of Electrical Engineering and Information Technology, Technische Universit?t Darmstadt, Merckstra?e 25, 64283, Darmstadt, Germany
  • 刊物类别:Physics and Astronomy
  • 刊物主题:None Assigned
  • 出版者:Springer New York
  • ISSN:1866-6906
文摘
To date, exploiting the full bandwidth of state-of-the-art InGaAs photomixers for generation and detection of continuous-wave (CW) THz radiation (typ. ~50 GHz to ~3 THz) required complex and costly external-cavity diode lasers with motorized resonator control. Distributed feedback (DFB) lasers, by contrast, are compact and inexpensive, but the tuning range per diode is limited to ~600 GHz at 1.5 μm. In this paper, we show that a combination of three DFB diodes covers the complete frequency range from 0 -2750 GHz without any gaps. In combination with InGaAs-based photomixers for terahertz generation and detection, the system achieves a dynamic range of > 100 dB at 56 GHz, 64 dB at 1000 GHz, and 26 dB at 2500 GHz. A field-programmable gate array (FPGA)-based lock-in amplifier permits a flexible adjustment of the integration time from 0.5 ms to 600 ms. Employing an optimized “fast scan-mode, a spectrum of ~1200 GHz -the bandwidth of each subset of two lasers -and 40 MHz steps is acquired in less than one minute, still maintaining a reasonable dynamic range. To the best of our knowledge, the bandwidth of 2.75 THz presents a new record for DFB-based CW-terahertz systems.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.