Numerical study of high impedance T-match antennas for terahertz photomixers
详细信息    查看全文
  • 作者:Lars Juul (1)
    Martin Mikulics (2)
    Mauro F. Pereira (3)
    Michel Marso (1)

    1. Research Unit for Engineering Science
    ; Universit茅 du Luxembourg ; 1359 ; Luxembourg ; Luxembourg
    2. Peter Gr眉nberg Institute (PGI-9)
    ; Forschungszentrum J眉lich ; 52425 ; J眉lich ; Germany
    3. Materials and Engineering Research Institute
    ; Sheffield Hallam University ; Sheffield ; S1 1WB ; UK
  • 关键词:Photoconductor impedance ; Terahertz photomixer ; Numerical simulation ; T ; match antenna
  • 刊名:Optical and Quantum Electronics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:47
  • 期:4
  • 页码:913-922
  • 全文大小:810 KB
  • 参考文献:1. Asada, M., Suzuki, S.: Compact THz oscillators with resonant tunneling diodes and application to high-capacity wireless聽communications. In: Applied Electromagnetics and Communications (ICECom), 21st International Conference on, pp. 1鈥?, 14鈥?6 Oct 2013
    2. Brown, ER (2003) THz generation by photomixing in ultrafast photoconductors. Int. J. High Speed Electron. Syst. 13: pp. 497-545 CrossRef
    3. Balanis, CA (2005) Antenna Theory. Wiley, London
    4. Blakemore, JS (1982) Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53: pp. R123-R181 CrossRef
    5. Dankowski, SU, Kiesel, P, Knupfer, B, Kneissl, M, Dohler, GH, Keil, UD, Dykaar, DR, Kopf, RF (1994) Annealing induced refractive index and absorption changes of low temperature grown GaAs. Appl. Phys. Lett. 65: pp. 3269-3271 CrossRef
    6. Drouin, BJ, Pearson, JC, Shanshan, Y, Gupta, H (2013) Characterization and use of a 1.3鈥?.5 THz multiplier chain for molecular spectroscopy. IEEE Trans. Terahertz Sci. Technol. 3: pp. 314-321 CrossRef
    7. Duffy, SM, Verghese, S, McIntosh, KA, Jackson, A, Gossard, AC, Matsuura, S (2001) Accurate modelling of dual dipole and slot elements used with photomixers for coherent terahertz output power. IEEE Trans. Microw. Theory Tech. 49: pp. 1032-1038 CrossRef
    8. Han, K, Nguyen, T, Park, I, Han, H (2010) Terahertz yagi-uda antenna for high input resistance. J. Infrared Millim Terahertz Waves 31: pp. 441-454
    9. Juul, L., Mikulics. M., Marso, M.: Improving output power of terahertz heterodyne photomixer by impedance matching. In: 2012 Ninth International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM) (2012)
    10. Kumar, S, Chan, CWI, Hu, Q, Reno, JL (2011) A 1.8-THz quantum cascade laser operating significantly above the temperature of $$\hbar \omega $$ 魔 蠅 /kB. Nat. Phys. 7: pp. 166-171 CrossRef
    11. K枚hler, R, Tredicucci, A, Beltram, F, Beere, H, Linfield, E, Davies, A, Ritchie, D, Iotti, R, Rossi, F (2002) Terahertz semiconductor-heterostructure laser. Nature 417: pp. 156-159 CrossRef
    12. Kraus, JD, Sturgeon, SS (1940) The t-matched antenna. QST 9: pp. 24-25
    13. Li, L, Chen, L, Zhu, J, Freeman, J, Dean, P, Valavanis, A, Davies, A, Linfield, E (2014) Terahertz quantum cascade lasers with $${\>}1$$ 1 W output powers. Electron. Lett. 50: pp. 309-311 CrossRef
    14. Lucyszyn, S.: Accurate CAD modelling of metal conduction losses at terahertz frequencies. In: Electron Devices for Microwave and Optoelectronic Applications, 2003. EDMO 2003. The 11th IEEE International Symposium on, pp. 180鈥?85 (2003)
    15. Mayorga, I.C., Mikulics, M., Schmitz, A., Van der Wal, P., Gusten, R., Marso, M., Kordo拧, P., L眉th, H.: An optimization of terahertz local oscillators based on LT-GaAs technology. In: Proceedings of SPIE 5498, Millimeter and Submillimeter Detectors for Astronomy II, pp. 537鈥?47 (2004)
    16. Mikulics, M.:Preparation and optimization of low-temperature-grown GaAs photomixers. PhD thesis, Rheinisch-Westf盲lische Technische Hochschule Aachen (2004)
    17. Mikulics, M., Marso, M., Stancek, S., Michael, EA., Kordo拧, P.: Terahertz-radiation photomixers on nitrogen-implanted GaAs. In: Advanced Semiconductor Devices and Microsystems ASDAM 鈥?6 International Conference on, pp. 117鈥?20 (2006)
    18. Missous, M, Kostakis, I, Saeedkia, D (2013) Long wavelength low temperature grown GaAs and InP-based Terahertz photoconductors devices. IEEE Sens. J. 13: pp. 63-71 CrossRef
    19. Ravaro, M, Jagtap, V, Santarelli, G, Sirtori, C, Li, LH, Khanna, SP, Linfield, EH, Barbieri, S (2013) Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling. Appl. Phys. Lett. 102: pp. 091107 CrossRef
    20. Rouvalis, E, Renaud, CC, Moodie, DG, Robertson, MJ, Seeds, AJ (2010) Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation. Opt. Express 18: pp. 11105-11110 CrossRef
    21. Schmielau, T, Pereira, M (2009) Impact of momentum dependent matrix elements on scattering effects in quantum cascade lasers. Phys. Status Solidi (B) Basic Res. 246: pp. 329-331 CrossRef
    22. Schmielau, T, Pereira, M (2009) Momentum dependent scattering matrix elements in quantum cascade laser transport. Microelectron. J. 40: pp. 869-871 CrossRef
    23. Schmielau, T., Pereira, M.: Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Appl. Phys. Lett. 95(23), 231111 (2009c)
    24. Wacker, A., Lindskog, M., Winge, D.: Nonequilibrium Green鈥檚 function model for simulation of quantum cascade laser devices under operating conditions. IEEE J. Sel. Top. Quantum Electron. 19(5), 1200611 (2013)
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
This paper outlines an efficient numerical method to design terahertz photomixers. The simulations are benchmarked using measured power levels from results published in the literature. Next, the method is applied to two new photomixer designs based on the high impedance T-match antenna with bias supply DC-blocking structures for either a uniplanar layout or a multilayer structure for improved device reliability. Manufacturability is favoured by avoiding the use of airbridges, substrate thinning or under-etching. The estimated output power of the improved design is 9.0聽 \(\upmu \!\text {W}\) , which is an improvement of three times over the reference photomixer.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.