Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms
详细信息    查看全文
  • 作者:Daniel I Speiser (1) (2)
    M Sabrina Pankey (1)
    Alexander K Zaharoff (1)
    Barbara A Battelle (3)
    Heather D Bracken-Grissom (4)
    Jesse W Breinholt (5)
    Seth M Bybee (6)
    Thomas W Cronin (7)
    Anders Garm (8)
    Annie R Lindgren (9)
    Nipam H Patel (10)
    Megan L Porter (11)
    Meredith E Protas (12)
    Ajna S Rivera (13)
    Jeanne M Serb (14)
    Kirk S Zigler (15)
    Keith A Crandall (16) (17)
    Todd H Oakley (1)

    1. Department of Ecology
    ; Evolution ; and Marine Biology ; University of California Santa Barbara ; Santa Barbara ; CA ; USA
    2. Department of Biological Sciences
    ; University of South Carolina ; Columbia ; SC ; USA
    3. The Whitney Laboratory for Marine Bioscience
    ; University of Florida ; St. Augustine ; FL ; USA
    4. Department of Biological Sciences
    ; Florida International University-Biscayne Bay Campus ; North Miami ; FL ; USA
    5. Florida Museum of Natural History
    ; University of Florida ; Gainesville ; FL ; USA
    6. Department of Biology
    ; Brigham Young University ; Provo ; UT ; USA
    7. Department of Biological Sciences
    ; University of Maryland Baltimore County ; Baltimore ; MD ; USA
    8. Department of Biology
    ; Marine Biological Section ; University of Copenhagen ; Copenhagen ; Denmark
    9. Department of Biology
    ; Portland State University ; Portland ; OR ; USA
    10. Department of Molecular and Cell Biology & Department of Integrative Biology
    ; University of California ; Berkeley ; CA ; USA
    11. Department of Biology
    ; University of South Dakota ; Vermillion ; SD ; USA
    12. Department of Natural Sciences and Mathematics
    ; Dominican University of California ; San Rafael ; CA ; USA
    13. Department of Biology
    ; University of the Pacific ; Stockton ; CA ; USA
    14. Department of Ecology
    ; Evolution ; and Organismal Biology ; Iowa State University ; Ames ; IA ; USA
    15. Department of Biology
    ; Sewanee ; The University of the South ; Sewanee ; TN ; USA
    16. Computational Biology Institute
    ; George Washington University ; Ashburn ; VA ; USA
    17. Department of Invertebrate Zoology
    ; National Museum of Natural History ; Smithsonian Institution ; Washington ; DC ; USA
  • 关键词:Bioinformatics ; Eyes ; Evolution ; Galaxy ; Next ; generation sequence analysis ; Orthology ; Phototransduction ; Transcriptomes ; Vision
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:924 KB
  • 参考文献:1. Fain, GL, Hardie, R, Laughlin, SB (2010) Phototransduction and the evolution of photoreceptors. Curr Biol 20: pp. R114-R124 CrossRef
    2. Nilsson, D-E, Arendt, D (2008) Eye evolution: the blurry beginning. Curr Biol 18: pp. R1096-R1098 CrossRef
    3. Rivera AS, Pankey MS, Plachetzki DC, Villacorta C, Syme AE, Serb JM, Omilian AR, Oakley TH: Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach. / BMC Evol Biol 2010, 10.
    4. Vopalensky, P, Kozmik, Z (2009) Eye evolution: common use and independent recruitment of genetic components. Philos Trans R Soc Lond B Biol Sci 364: pp. 2819-2832 CrossRef
    5. Lopez, JV, Bracken-Grissom, H, Collins, AG, Collins, T, Crandall, K, Distel, D, Dunn, C, Giribet, G, Haddock, S, Knowlton, N, Martindale, M, Medina, M, Messing, C, O'Brien, SJ, Paulay, G, Putnam, N, Ravasi, T, Rouse, GW, Ryan, JF, Schulze, A, Worheide, G, Adamska, M, Bailly, X, Breinholt, J, Browne, WE, Diaz, MC, Evans, N, Flot, JF, Forgarty, N, Johnston, M (2014) The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. J Hered 105: pp. 1-18
    6. Conesa, A, G枚tz, S, Garc铆a-G贸mez, JM, Terol, J, Tal贸n, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-3676 CrossRef
    7. Martin, DM, Berriman, M, Barton, GJ (2004) GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes. BMC Bioinformatics 5: pp. 178 CrossRef
    8. Khan, S, Situ, G, Decker, K, Schmidt, CJ (2003) GoFigure: Automated Gene Ontology鈩?annotation. Bioinformatics 19: pp. 2484-2485 CrossRef
    9. Zehetner, G (2003) OntoBlast function: From sequence similarities directly to potential functional annotations by ontology terms. Nucleic Acids Res 31: pp. 3799-3803 CrossRef
    10. Koski, LB, Gray, MW, Lang, BF, Burger, G (2005) AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics 6: pp. 151 CrossRef
    11. Oakley, TH, Alexandrou, MA, Ngo, R, Pankey, MS, Churchill, CCK, Lopker, KB (2014) Osiris: Accessible and reproducible phylogenetic and phylogenomic analyses within the Galaxy workflow management system. BMC Bioinformatics 15: pp. 1 CrossRef
    12. Blankenberg, D, Kuster, GV, Coraor, N, Ananda, G, Lazarus, R, Mangan, M, Nekrutenko, A, Taylor, J (2010) Galaxy: a web鈥恇ased genome analysis tool for experimentalists. Curr Protoc Mol Biol 19: pp. 10
    13. Giardine, B, Riemer, C, Hardison, RC, Burhans, R, Elnitski, L, Shah, P, Zhang, Y, Blankenberg, D, Albert, I, Taylor, J (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15: pp. 1451-1455 CrossRef
    14. Goecks, J, Nekrutenko, A, Taylor, J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11: pp. R86 CrossRef
    15. Friedrich, M, Chen, R, Daines, B, Bao, R, Caravas, J, Rai, PK, Zagmajster, M, Peck, SB (2011) Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave. J Exp Biol 214: pp. 3532-3541 CrossRef
    16. Fu, Y, Yau, K-W (2007) Phototransduction in mouse rods and cones. Pflugers Arch 454: pp. 805-819 CrossRef
    17. Takeuchi, K, Satoul, Y, Yamamoto, H, Satoh, N (2005) A genome-wide survey of genes for enzymes involved in pigment synthesis in an ascidian, Ciona intestinalis. Zoolog Sci 22: pp. 723-734 CrossRef
    18. Tomarev, SI, Piatigorsky, J (1996) Lens crystallins of invertebrates - Diversity and recruitment from detoxification enzymes and novel proteins. Eur J Biochem 235: pp. 449-465 CrossRef
    19. Wistow, GJ, Piatigorsky, J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57: pp. 479-504 CrossRef
    20. Silver, SJ, Rebay, I (2005) Signaling circuitries in development: insights from the retinal determination gene network. Development 132: pp. 3-13 CrossRef
    21. Gehring, WJ (2005) New perspectives on eye development and the evolution of eyes and photoreceptors. J Hered 96: pp. 171-184 CrossRef
    22. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: pp. 403-410 CrossRef
    23. Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: pp. 1792-1797 CrossRef
    24. Katoh, K, Misawa, K, Kuma, K, Miyata, T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: pp. 3059-3066 CrossRef
    25. Katoh, K, Toh, H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: pp. 286-298 CrossRef
    26. Berger, SA, Krompass, D, Stamatakis, A (2011) Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 60: pp. 291-302 CrossRef
    27. Stark, M, Berger, S, Stamatakis, A, Mering, C (2010) MLTreeMap - accurate Maximum Likelihood placement of environmental DNA sequences into taxonomic and functional reference phylogenies. BMC Genomics 11: pp. 461 CrossRef
    28. Gardner LD, Mills D, Wiegand A, Leavesley D, Elizur A: Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima. / BMC Genomics 2011, 12.
    29. Zhang, G, Fang, X, Guo, X, Li, L, Luo, R, Xu, F, Yang, P, Zhang, L, Wang, X, Qi, H, Xiong, Z, Que, H, Xie, Y, Holland, PWH, Paps, J, Zhu, Y, Wu, F, Chen, Y, Wang, J, Peng, C, Meng, J, Yang, L, Liu, J, Wen, B, Zhang, N, Huang, Z, Zhu, Q, Feng, Y, Mount, A, Hedgecock, D (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490: pp. 49-54 CrossRef
    30. Jackson, DJ, McDougall, C, Woodcroft, B, Moase, P, Rose, RA, Kube, M, Reinhardt, R, Rokhsar, DS, Montagnani, C, Joubert, C (2010) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27: pp. 591-608 CrossRef
    31. Ajioka, RS, Phillips, JD, Kushner, JP (2006) Biosynthesis of heme in mammals. Biochim Biophys Acta 1763: pp. 723-736 CrossRef
    32. Chiou, S-H (1988) A novel crystallin from octopus lens. FEBS Lett 241: pp. 261-264 CrossRef
    33. Zinovieva, R, Tomarev, S, Piatigorsky, J (1993) Aldehyde dehydrogenase-derived omega-crystallins of squid and octopus. Specialization for lens expression. J Biol Chem 268: pp. 11449-11455
    34. Carosa, E, Kozmik, Z, Rall, JE, Piatigorsky, J (2002) Structure and expression of the scallop Omega-crystallin gene - Evidence for convergent evolution of promoter sequences. J Biol Chem 277: pp. 656-664 CrossRef
    35. Horwitz, J, Ding, L, Vasiliou, V, Cantore, M, Piatigorsky, J (2006) Scallop lens 惟-crystallin (ALDH1A9): A novel tetrameric aldehyde dehydrogenase. Biochem Biophys Res Commun 348: pp. 1302-1309 CrossRef
    36. Piatigorsky, J, Kozmik, Z, Horwitz, J, Ding, LL, Carosa, E, Robison, WG, Steinbach, PJ, Tamm, ER (2000) Omega-crystallin of the scallop lens - A dimeric aldehyde dehydrogenase class 1/2 enzyme-crystallin. J Biol Chem 275: pp. 41064-41073 CrossRef
    37. Kishigami, A, Ogasawara, T, Watanabe, Y, Hirata, M, Maeda, T, Hayashi, F, Tsukahara, Y (2001) Inositol-1, 4, 5-trisphosphate-binding proteins controlling the phototransduction cascade of invertebrate visual cells. J Exp Biol 204: pp. 487-493
    38. Mitchell, J, Gutierrez, J, Northup, JK (1995) Purification, characterization, and partial amino acid sequence of a G protein-activated phospholipase C from squid photoreceptors. J Biol Chem 270: pp. 854-859 CrossRef
    39. Murakami, M, Kouyama, T (2008) Crystal structure of squid rhodopsin. Nature 453: pp. 363-367 CrossRef
    40. Monk, PD, Carne, A, Liu, SH, Ford, JW, Keen, JN, Findlay, JB (1996) Isolation, cloning, and characterisation of a trp homologue from squid (Loligo forbesi) photoreceptor membranes. J Neurochem 67: pp. 2227-2235 CrossRef
    41. Ozaki, K, Terakita, A, Ozaki, M, Hara, R, Hara, T, Hara-Nishimura, I, Mori, H, Nishimura, M (1994) Molecular characterization and functional expression of squid retinal-binding protein. A novel species of hydrophobic ligand-binding protein. J Biol Chem 269: pp. 3838-3845
    42. Ozaki, K, Terakita, A, Hara, R, Hara, T (1987) Isolation and characterization of a retinal-binding protein from the squid retina. Vision Research 27: pp. 1057-1070 CrossRef
    43. Holt, AL, Sweeney, AM, Johnsen, S, Morse, DE (2011) A highly distributed Bragg stack with unique geometry provides effective camouflage for Loliginid squid eyes. J R Soc Interface 8: pp. 1386-1399 CrossRef
    44. Crookes, WJ, Ding, L-L, Huang, QL, Kimbell, JR, Horwitz, J, McFall-Ngai, MJ (2004) Reflectins: the unusual proteins of squid reflective tissues. Science 303: pp. 235-238 CrossRef
    45. Ziegler, I (1961) Genetic aspects of ommochrome and pterin pigments. Adv Genet 10: pp. 349-403 CrossRef
    46. Wang, X, Wang, T, Jiao, Y, Lintig, J, Montell, C (2010) Requirement for an enzymatic visual cycle in Drosophila. Curr Biol 20: pp. 93-102 CrossRef
    47. Wang, X, Wang, T, Ni, JD, Lintig, J, Montell, C (2012) The Drosophila visual cycle and de novo chromophore synthesis depends on rdhB. J Neurosci 32: pp. 3485-3491 CrossRef
    48. Bielecki, J, Zaharoff, AK, Leung, NY, Garm, A, Oakley, TH (2014) Ocular and extraocular expression of opsins in the rhopalia of Tripedalia cystophora (Cnidaria:Cubozoa). PLoS One 9: pp. e98870 CrossRef
    49. Koyanagi, M, Takano, K, Tsukamoto, H, Ohtsu, K, Tokunaga, F, Terakita, A (2008) Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade. Proc Natl Acad Sci 105: pp. 15576-15580 CrossRef
    50. Piatigorsky, J, Horwitz, J, Norman, BL (1993) J1-crystallins of the cubomedusan jellyfish lens constitute a novel family encoded in at least three intronless genes. J Biol Chem 268: pp. 11894-11901
    51. Hanlon, RT, Messenger, JB (1998) Cephalopod behaviour. Cambridge University Press, Cambridge
    52. Zylinski, S, Johnsen, S (2011) Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr Biol 21: pp. 1937-1941 CrossRef
    53. M盲thger, LM, Barbosa, A, Miner, S, Hanlon, RT (2006) Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Res 46: pp. 1746-1753 CrossRef
    54. Michinomae, M, Masuda, H, Seidou, M, Kito, Y (1994) Structural basis for wavelength discrimination in the banked retina of the firefly squid Watasenia scintillans. J Exp Biol 193: pp. 1-12
    55. Tong, D, Rozas, NS, Oakley, TH, Mitchell, J, Colley, NJ, McFall-Ngai, MJ (2009) Evidence for light perception in a bioluminescent organ. Proc Natl Acad Sci 106: pp. 9836-9841 CrossRef
    56. M盲thger, LM, Roberts, SB, Hanlon, RT (2010) Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis. Biol Lett 6: pp. 600-603 CrossRef
    57. Chiou, T-H, Kleinlogel, S, Cronin, T, Caldwell, R, Loeffler, B, Siddiqi, A, Goldizen, A, Marshall, J (2008) Circular polarization vision in a stomatopod crustacean. Curr Biol 18: pp. 429-434 CrossRef
    58. Cronin, TW, Marshall, NJ (1989) A retina with at least ten spectral types of photoreceptors in a mantis shrimp. Nature 339: pp. 137-140 CrossRef
    59. Marshall, J, Cronin, TW, Shashar, N, Land, M (1999) Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Curr Biol 9: pp. 755-758 CrossRef
    60. Thoen, HH, How, MJ, Chiou, T-H, Marshall, J (2014) A Different form of color vision in mantis shrimp. Science 343: pp. 411-413 CrossRef
    61. Yang, E-C, Osorio, D (1991) Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau. J Comp Physiol A 169: pp. 663-669 CrossRef
    62. Corbet, PS (1999) Dragonflies: Behaviour and ecology of Odonata. Harley Books, Colchester
    63. Schultz, TD, Fincke, OM (2009) Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly. Funct Ecol 23: pp. 724-732 CrossRef
    64. Svensson, E, Gosden, T (2007) Contemporary evolution of secondary sexual traits in the wild. Funct Ecol 21: pp. 422-433 CrossRef
    65. Prevorcnik, S, Blejec, A, Sket, B (2004) Racial differentiation in Asellus aquaticus (L.) (Crustacea: Isopoda: Asellidae). Archiv f眉r Hydrobiologie 160: pp. 193-214 CrossRef
    66. Turk, S, Sket, B, Sarbu, 艦 (1996) Comparison between some epigean and hypogean populations of Asellus aquaticus (Crustacea: Isopoda: Asellidae). Hydrobiologia 337: pp. 161-170 CrossRef
    67. Crandall, KA, Hillis, DM (1997) Rhodopsin evolution in the dark. Nature 387: pp. 667-668 CrossRef
    68. Kornicker, LS, Harrison-Nelson, E (1997) Myodocopid Ostracoda of Pillar Point Harbor, Half Moon Bay, California. Smithson Contrib Zool 593: pp. 1-53
    69. Rivera, AS, Oakley, TH (2009) Ontogeny of sexual dimorphism via tissue duplication in an ostracod (Crustacea). Evol Dev 11: pp. 233-243 CrossRef
    70. Oakley, TH (2005) Myodocopa (Crustacea: Ostracoda) as models for evolutionary studies of light and vision: multiple origins of bioluminescence and extreme sexual dimorphism. Hydrobiologia 538: pp. 179-192 CrossRef
    71. Garm, A, Coates, M, Gad, R, Seymour, J, Nilsson, D-E (2007) The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. J Comp Physiol A 193: pp. 547-557 CrossRef
    72. Garm, A, Ekstr枚m, P, Boudes, M, Nilsson, D-E (2006) Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325: pp. 333-343 CrossRef
    73. Parkefelt, L, Skogh, C, Nilsson, DE, Ekstr枚m, P (2005) Bilateral symmetric organization of neural elements in the visual system of a coelenterate, Tripedalia cystophora (Cubozoa). J Comp Neurol 492: pp. 251-262 CrossRef
    74. Garm, A, Bielecki, J (2008) Swim pacemakers in box jellyfish are modulated by the visual input. J Comp Physiol A 194: pp. 641-651 CrossRef
    75. Nilsson, D-E, Gisl茅n, L, Coates, MM, Skogh, C, Garm, A (2005) Advanced optics in a jellyfish eye. Nature 435: pp. 201-205 CrossRef
    76. O鈥機onnor, M, Garm, A, Nilsson, D-E (2009) Structure and optics of the eyes of the box jellyfish Chiropsella bronzie. J Comp Physiol A 195: pp. 557-569 CrossRef
    77. Garm, A, O'Connor, M, Parkefelt, L, Nilsson, D-E (2007) Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie. J Exp Biol 210: pp. 3616-3623 CrossRef
    78. Garm, A, Oskarsson, M, Nilsson, D-E (2011) Box jellyfish use terrestrial visual cues for navigation. Curr Biol 21: pp. 798-803 CrossRef
    79. Kozmik, Z, Ruzickova, J, Jonasova, K, Matsumoto, Y, Vopalensky, P, Kozmikova, I, Strnad, H, Kawamura, S, Piatigorsky, J, Paces, V (2008) Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci 105: pp. 8989-8993 CrossRef
    80. Plachetzki DC, Degnan BM, Oakley TH: The origins of novel protein interactions during animal opsin evolution. / Plos One 2007, 2.
    81. Plachetzki, DC, Fong, CR, Oakley, TH (2010) The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proc R Soc Lond B Biol Sci 277: pp. 1963-1969 CrossRef
    82. Chou, H-H, Holmes, MH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17: pp. 1093-1104 CrossRef
    83. Li, S, Chou, H-H (2004) LUCY2: an interactive DNA sequence quality trimming and vector removal tool. Bioinformatics 20: pp. 2865-2866 CrossRef
    84. Zheng, Y, Zhao, L, Gao, J, Fei, Z (2011) iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinformatics 12: pp. 453 CrossRef
    85. Cock, PJ, Antao, T, Chang, JT, Chapman, BA, Cox, CJ, Dalke, A, Friedberg, I, Hamelryck, T, Kauff, F, Wilczynski, B (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: pp. 1422-1423 CrossRef
    86. Richards, S, Gibbs, RA, Weinstock, GM, Brown, SJ, Denell, R, Beeman, RW, Gibbs, R, Bucher, G, Friedrich, M, Grimmelikhuijzen, CJ (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452: pp. 949-955 CrossRef
    87. Lapan, SW, Reddien, PW (2012) Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. Cell Rep 2: pp. 294-307 CrossRef
    88. Lamb, T, Pugh, E (2004) Dark adaptation and the retinoid cycle of vision. Prog Retin Eye Res 23: pp. 307-380 CrossRef
    89. Braasch I, Schartl M, Volff J-N: Evolution of pigment synthesis pathways by gene and genome duplication in fish. / BMC Evol Biol 2007, 7.
    90. Wittkopp, PJ, Carroll, SB, Kopp, A (2003) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 19: pp. 495-504 CrossRef
    91. Ziegler, I (2003) The pteridine pathway in zebrafish: Regulation and specification during the determination of neural crest cell-fate. Pigment Cell Res 16: pp. 172-182 CrossRef
    92. Stamatakis, A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: pp. 2688-2690 CrossRef
    93. Stamatakis, A, Hoover, P, Rougemont, J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57: pp. 758-771 CrossRef
    94. Katoh, K, Standley, DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: pp. 772-780 CrossRef
  • 刊物主题:Bioinformatics; Microarrays; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Combinatorial Libraries; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1471-2105
文摘
Background Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. Results We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository (http://bitbucket.org/osiris_phylogenetics/pia/) and we demonstrate PIA on a publicly-accessible web server (http://galaxy-dev.cnsi.ucsb.edu/pia/). Conclusions Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.