Radiation emergencies: radiation-related brain and lung injury
详细信息    查看全文
  • 作者:Matthew S. Ning ; Joseph M. Kaminski ; Darko Pucar…
  • 关键词:Radiation toxicity ; Cranial irradiation ; Pseudoprogression ; Radiation necrosis ; Radiation pneumonitis ; Radiation fibrosis
  • 刊名:Journal of Radiation Oncology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:5
  • 期:1
  • 页码:9-17
  • 全文大小:3,785 KB
  • 参考文献:1.Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29. doi:10.​3322/​caac.​21208 CrossRef PubMed
    2.Lee AW, Foo W, Chappell R et al (1998) Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 40:35–42CrossRef PubMed
    3.Telera S, Fabi A, Pace A et al (2013) Radionecrosis induced by stereotactic radiosurgery of brain metastases: results of surgery and outcome of disease. J Neurooncol 113:313–325. doi:10.​1007/​s11060-013-1120-8 CrossRef PubMed
    4.Chao ST, Ahluwalia MS, Barnett GH et al (2013) Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 87:449–457. doi:10.​1016/​j.​ijrobp.​2013.​05.​015 CrossRef PubMed
    5.Eichler AF, Chung E, Kodack DP et al (2011) The biology of brain metastases-translation to new therapies. Nat Rev Clin Oncol 8:344–356. doi:10.​1038/​nrclinonc.​2011.​58 PubMed PubMedCentral
    6.Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75:5–14. doi:10.​1007/​s11060-004-8093-6 CrossRef PubMed
    7.Barnholtz-Sloan JS, Sloan AE, Davis FG et al (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol Off J Am Soc Clin Oncol 22:2865–2872. doi:10.​1200/​JCO.​2004.​12.​149 CrossRef
    8.Schouten LJ, Rutten J, Huveneers HAM, Twijnstra A (2002) Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94:2698–2705CrossRef PubMed
    9.Stockham AL, Ahluwalia M, Reddy CA et al (2013) Results of a questionnaire regarding practice patterns for the diagnosis and treatment of intracranial radiation necrosis after SRS. J Neurooncol 115:469–475. doi:10.​1007/​s11060-013-1248-6 CrossRef PubMed
    10.Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228CrossRef PubMed
    11.Werner-Wasik M, Rudoler S, Preston PE et al (1999) Immediate side effects of stereotactic radiotherapy and radiosurgery. Int J Radiat Oncol Biol Phys 43:299–304CrossRef PubMed
    12.Vecht CJ, Hovestadt A, Verbiest HB et al (1994) Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: a randomized study of doses of 4, 8, and 16 mg per day. Neurology 44:675–680CrossRef PubMed
    13.Ryan J (2000) Radiation somnolence syndrome. J Pediatr Oncol Nurs Off J Assoc Pediatr Oncol Nurs 17:50–53CrossRef
    14.Griebel M, Friedman HS, Halperin EC et al (1991) Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma. Med Pediatr Oncol 19:182–186CrossRef PubMed
    15.Fiegler W, Langer M, Scheer M, Kazner E (1986) Reversible computed tomographic changes following brain tumor irradiation induced by the “early-delayed reaction” after radiation. Radiol 26:206–209
    16.Watne K, Hager B, Heier M, Hirschberg H (1990) Reversible oedema and necrosis after irradiation of the brain. Diagnostic procedures and clinical manifestations. Acta Oncol Stockh Swed 29:891–895CrossRef
    17.Brandsma D, Stalpers L, Taal W et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461. doi:10.​1016/​S1470-2045(08)70125-6 CrossRef PubMed
    18.Chamberlain MC, Glantz MJ, Chalmers L et al (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82:81–83. doi:10.​1007/​s11060-006-9241-y CrossRef PubMed
    19.Shah R, Vattoth S, Jacob R et al (2012) Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiogr Rev Publ Radiol Soc N Am Inc 32:1343–1359. doi:10.​1148/​rg.​325125002
    20.Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys 47:291–298CrossRef PubMed
    21.Shaw E, Arusell R, Scheithauer B et al (2002) Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol Off J Am Soc Clin Oncol 20:2267–2276CrossRef
    22.Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384. doi:10.​1148/​radiology.​217.​2.​r00nv36377 CrossRef PubMed
    23.Mayer R, Sminia P (2008) Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70:1350–1360. doi:10.​1016/​j.​ijrobp.​2007.​08.​015 CrossRef PubMed
    24.McPherson CM, Warnick RE (2004) Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J Neurooncol 68:41–47CrossRef PubMed
    25.Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (1998) Analysis of neurological sequelae from radiosurgery of arteriovenous malformations: how location affects outcome. Int J Radiat Oncol Biol Phys 40:273–278CrossRef PubMed
    26.Ruben JD, Dally M, Bailey M et al (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65:499–508. doi:10.​1016/​j.​ijrobp.​2005.​12.​002 CrossRef PubMed
    27.Lee AWM, Kwong DLW, Leung SF et al (2002) Factors affecting risk of symptomatic temporal lobe necrosis: significance of fractional dose and treatment time. Int J Radiat Oncol Biol Phys 53:75–85CrossRef PubMed
    28.Murray KJ, Scott C, Greenberg HM et al (1997) A randomized phase III study of accelerated hyperfractionation versus standard in patients with unresected brain metastases: a report of the Radiation Therapy Oncology Group (RTOG) 9104. Int J Radiat Oncol Biol Phys 39:571–574CrossRef PubMed
    29.Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:S20–27. doi:10.​1016/​j.​ijrobp.​2009.​02.​091 CrossRef PubMed PubMedCentral
    30.Varlotto JM, Flickinger JC, Niranjan A et al (2003) Analysis of tumor control and toxicity in patients who have survived at least one year after radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 57:452–464CrossRef PubMed
    31.Voges J, Treuer H, Sturm V et al (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 36:1055–1063CrossRef PubMed
    32.Flickinger JC, Kondziolka D, Pollock BE et al (1997) Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys 38:485–490CrossRef PubMed
    33.Korytko T, Radivoyevitch T, Colussi V et al (2006) 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys 64:419–424. doi:10.​1016/​j.​ijrobp.​2005.​07.​980 CrossRef PubMed
    34.Blonigen BJ, Steinmetz RD, Levin L et al (2010) Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 77:996–1001. doi:10.​1016/​j.​ijrobp.​2009.​06.​006 CrossRef PubMed
    35.Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol Lond Engl 6:48. doi:10.​1186/​1748-717X-6-48 CrossRef
    36.Corn BW, Yousem DM, Scott CB et al (1994) White matter changes are correlated significantly with radiation dose. Observations from a randomized dose-escalation trial for malignant glioma (Radiation Therapy Oncology Group 83–02). Cancer 74:2828–2835CrossRef PubMed
    37.Sause WT, Scott C, Krisch R et al (1993) Phase I/II trial of accelerated fractionation in brain metastases RTOG 85–28. Int J Radiat Oncol Biol Phys 26:653–657CrossRef PubMed
    38.McDonald S, Rubin P, Phillips TL, Marks LB (1995) Injury to the lung from cancer therapy: clinical syndromes, measurable endpoints, and potential scoring systems. Int J Radiat Oncol Biol Phys 31:1187–1203. doi:10.​1016/​0360-3016(94)00429-O CrossRef PubMed
    39.Lingos TI, Recht A, Vicini F et al (1991) Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy. Int J Radiat Oncol Biol Phys 21:355–360CrossRef PubMed
    40.Chakravarthy A, Johnson D, Choy H (1999) The role of radiation, with or without chemotherapy, in the management of NSCLC. Oncol Williston Park N 13:93–100
    41.Hochstrasser A, Benz G, Joerger M et al (2012) Interstitial pneumonitis after treatment with pemetrexed: a rare event? Chemotherapy 58:84–88. doi:10.​1159/​000336131 CrossRef PubMed
    42.Vahid B, Marik PE (2008) Pulmonary complications of novel antineoplastic agents for solid tumors. Chest 133:528–538. doi:10.​1378/​chest.​07-0851 CrossRef PubMed
    43.Pang Q, Wei Q, Xu T et al (2013) Functional promoter variant rs2868371 of HSPB1 is associated with risk of radiation pneumonitis after chemoradiation for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 85:1332–1339. doi:10.​1016/​j.​ijrobp.​2012.​10.​011 CrossRef PubMed
    44.Jiang Z-Q, Yang K, Komaki R et al (2012) Long-term clinical outcome of intensity-modulated radiotherapy for inoperable non-small cell lung cancer: the MD Anderson experience. Int J Radiat Oncol Biol Phys 83:332–339. doi:10.​1016/​j.​ijrobp.​2011.​06.​1963 CrossRef PubMed
    45.Kwa SL, Lebesque JV, Theuws JC et al (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42:1–9CrossRef PubMed
    46.Ikezoe J, Takashima S, Morimoto S et al (1988) CT appearance of acute radiation-induced injury in the lung. AJR Am J Roentgenol 150:765–770. doi:10.​2214/​ajr.​150.​4.​765 CrossRef PubMed
    47.Keidar Z, Haim N, Guralnik L et al (2004) PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med Off Publ Soc Nucl Med 45:1640–1646
    48.Nakajima N, Sugawara Y, Kataoka M et al (2013) Differentiation of tumor recurrence from radiation-induced pulmonary fibrosis after stereotactic ablative radiotherapy for lung cancer: characterization of 18F-FDG PET/CT findings. Ann Nucl Med 27:261–270. doi:10.​1007/​s12149-012-0682-4 CrossRef PubMed
    49.Morgan GW, Breit SN (1995) Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury. Int J Radiat Oncol Biol Phys 31:361–369. doi:10.​1016/​0360-3016(94)00477-3 CrossRef PubMed
    50.Nakayama Y, Makino S, Fukuda Y et al (1996) Activation of lavage lymphocytes in lung injuries caused by radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 34:459–467CrossRef PubMed
    51.Robnett TJ, Machtay M, Vines EF et al (2000) Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 48:89–94CrossRef PubMed
    52.Abratt RP, Morgan GW, Silvestri G, Willcox P (2004) Pulmonary complications of radiation therapy. Clin Chest Med 25:167–177. doi:10.​1016/​S0272-5231(03)00126-6 CrossRef PubMed
    53.Wohl ME, Griscom NT, Traggis DG, Jaffe N (1975) Effects of therapeutic irradiation delivered in early childhood upon subsequent lung function. Pediatrics 55:507–516PubMed
    54.Lopez Guerra JL, Gomez D, Zhuang Y et al (2012) Change in diffusing capacity after radiation as an objective measure for grading radiation pneumonitis in patients treated for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 83:1573–1579. doi:10.​1016/​j.​ijrobp.​2011.​10.​065 CrossRef PubMed
    55.Borst GR, De Jaeger K, Belderbos JSA et al (2005) Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int J Radiat Oncol Biol Phys 62:639–644. doi:10.​1016/​j.​ijrobp.​2004.​11.​029 CrossRef PubMed
    56.Marks LB, Bentzen SM, Deasy JO et al (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76:S70–76. doi:10.​1016/​j.​ijrobp.​2009.​06.​091 CrossRef PubMed PubMedCentral
    57.Mazeron R, Etienne-Mastroianni B, Pérol D et al (2010) Predictive factors of late radiation fibrosis: a prospective study in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 77:38–43. doi:10.​1016/​j.​ijrobp.​2009.​04.​019 CrossRef PubMed
    58.Kong F-M, Hayman JA, Griffith KA et al (2006) Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 65:1075–1086. doi:10.​1016/​j.​ijrobp.​2006.​01.​051 CrossRef PubMed
    59.Palma DA, Senan S, Tsujino K et al (2013) Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 85:444–450. doi:10.​1016/​j.​ijrobp.​2012.​04.​043 CrossRef PubMed PubMedCentral
    60.Yom SS, Liao Z, Liu HH et al (2007) Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 68:94–102. doi:10.​1016/​j.​ijrobp.​2006.​12.​031 CrossRef PubMed
    61.Sura S, Gupta V, Yorke E et al (2008) Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother Oncol J Eur Soc Ther Radiol Oncol 87:17–23. doi:10.​1016/​j.​radonc.​2008.​02.​005 CrossRef
    62.Shi A, Zhu G, Wu H et al (2010) Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol Lond Engl 5:35. doi:10.​1186/​1748-717X-5-35 CrossRef
    63.Baker R, Han G, Sarangkasiri S et al (2013) Clinical and dosimetric predictors of radiation pneumonitis in a large series of patients treated with stereotactic body radiation therapy to the lung. Int J Radiat Oncol Biol Phys 85:190–195. doi:10.​1016/​j.​ijrobp.​2012.​03.​041 CrossRef PubMed
    64.Barriger RB, Forquer JA, Brabham JG et al (2012) A dose-volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 82:457–462. doi:10.​1016/​j.​ijrobp.​2010.​08.​056 CrossRef PubMed
    65.Borst GR, Ishikawa M, Nijkamp J et al (2009) Radiation pneumonitis in patients treated for malignant pulmonary lesions with hypofractionated radiation therapy. Radiother Oncol J Eur Soc Ther Radiol Oncol 91:307–313. doi:10.​1016/​j.​radonc.​2009.​02.​003 CrossRef
    66.Bongers EM, Botticella A, Palma DA et al (2013) Predictive parameters of symptomatic radiation pneumonitis following stereotactic or hypofractionated radiotherapy delivered using volumetric modulated arcs. Radiother Oncol J Eur Soc Ther Radiol Oncol 109:95–99. doi:10.​1016/​j.​radonc.​2013.​10.​011 CrossRef
    67.Chang JY, Li Q-Q, Xu Q-Y et al (2014) Stereotactic ablative radiation therapy for centrally located early stage or isolated parenchymal recurrences of non-small cell lung cancer: how to fly in a “no fly zone.”. Int J Radiat Oncol Biol Phys 88:1120–1128. doi:10.​1016/​j.​ijrobp.​2014.​01.​022 CrossRef PubMed
    68.Guckenberger M, Heilman K, Wulf J et al (2007) Pulmonary injury and tumor response after stereotactic body radiotherapy (SBRT): results of a serial follow-up CT study. Radiother Oncol J Eur Soc Ther Radiol Oncol 85:435–442. doi:10.​1016/​j.​radonc.​2007.​10.​044 CrossRef
    69.Matsuo Y, Shibuya K, Nakamura M et al (2012) Dose–volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 83:e545–549. doi:10.​1016/​j.​ijrobp.​2012.​01.​018 CrossRef PubMed
    70.Yamashita H, Nakagawa K, Nakamura N et al (2007) Exceptionally high incidence of symptomatic grade 2–5 radiation pneumonitis after stereotactic radiation therapy for lung tumors. Radiat Oncol Lond Engl 2:21. doi:10.​1186/​1748-717X-2-21 CrossRef
    71.Guckenberger M, Baier K, Polat B et al (2010) Dose–response relationship for radiation-induced pneumonitis after pulmonary stereotactic body radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol 97:65–70. doi:10.​1016/​j.​radonc.​2010.​04.​027 CrossRef
    72.Ricardi U, Filippi AR, Guarneri A et al (2009) Dosimetric predictors of radiation-induced lung injury in stereotactic body radiation therapy. Acta Oncol Stockh Swed 48:571–577. doi:10.​1080/​0284186080252082​1 CrossRef
    73.Hernando ML, Marks LB, Bentel GC et al (2001) Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 51:650–659CrossRef PubMed
  • 作者单位:Matthew S. Ning (1)
    Joseph M. Kaminski (2)
    Darko Pucar (3)
    Eric T. Shinohara (1)

    1. Department of Radiation Oncology, Vanderbilt University School of Medicine, 1301 Medical Center Drive, B-902/TVC, Nashville, TN, 37232-5671, USA
    2. Department of Radiation Oncology, Medical College of Georgia at Georgia Regents University, Augusta, GA, USA
    3. Department of Radiology and Imaging, Medical College of Georgia at Georgia Regents University, Augusta, GA, USA
  • 刊物主题:Oncology; Imaging / Radiology; Cancer Research; Surgical Oncology; Surgery; Radiotherapy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1948-7908
文摘
Background The advent of modern radiation techniques, such as intensity modulated and stereotactic ablative radiation therapy, has permitted increasingly accurate delivery of radiation, with ability to shape distribution of dose specifically to the tumor. These techniques limit dose to surrounding normal tissue in an effort to reduce toxicity; however, despite such improvements, potentially serious side effects related to treatment may occur, requiring urgent management.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.