Synthesis and characterization of NIR-responsive Aurod@pNIPAAm-PEGMA nanogels as vehicles for delivery of photodynamic therapy agents
详细信息    查看全文
  • 作者:Ting Shang (1)
    Cai-ding Wang (1)
    Lei Ren (1) (2)
    Xin-hua Tian (3)
    Dong-hui Li (4)
    Xue-bin Ke (1)
    Min Chen (1)
    An-qi Yang (1)
  • 关键词:NIR ; responsive ; Aurod@pNIPAAm ; PEGMA nanogel ; LCST ; singlet oxygen ; PDT
  • 刊名:Nanoscale Research Letters
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:8
  • 期:1
  • 全文大小:424KB
  • 参考文献:1. Han G, Ghosh P, Rotello VM: Functionalized gold nanoparticles for drug delivery. / Nanomedicine 2007, 2:113-23. CrossRef
    2. Lal S, Clare SE, Halas NJ: Nanoshell-enabled photothermal cancer therapy: impending clinical impact. / Acc Chem Res 2008, 41:1842-851. CrossRef
    3. Tong L, Wei QS, Wei A, Cheng JX: Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. / Photochem Photobiol 2009, 85:21-2. CrossRef
    4. Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y: Gold nanocages for biomedical applications. / Adv Mater 2007, 19:3177-184. CrossRef
    5. Nann T: Nanoparticles in photodynamic therapy. / Nano Biomed Eng 2011, 3:137-43.
    6. Jana NR, Gearheart L, Murphy CJ: Wet chemical synthesis of high aspect ratio cylindrical gold nanorod. / J Phys Chem B 2001, 105:4065-067. CrossRef
    7. Liao HW, Hafner JH: Gold nanorod bioconjugates. / Chem Mater 2005, 17:4636-641. CrossRef
    8. Cheng JS, Liang QQ, Chang HX, Zhu WJ: Redox approaches derived Tin (IV) oxide nanoparticles/graphene nanocomposites as the near-infrared absorber for selective human prostate cancer cells destruction. / Nano Biomed Eng 2012, 4:76-2.
    9. Rahimi M, Wadajkar A, Subramanian K, Yousef M, Cui W, Hsieh JT, Nguyen KT: In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. / Nanomedicine 2010, 6:672-80. CrossRef
    10. He J, Chen JY, Wang P, Wang PN, Guo J, Yang WL, Wang CC, Peng Q: Poly( N -isopropylacrylamide)-coated thermo-responsive nanoparticles for controlled delivery of sulfonated Zn-phthalocyanine in Chinese hamster ovary cells in vitro and zebra fish in vivo. / Nanotechnology 2007, 18:5.
    11. Fujimoto KL, Ma ZW, Nelson DM, Hashizume R, Guan JJ, Tobita K, Wagner WR: Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. / Biomaterials 2009, 30:4357-368. CrossRef
    12. Qiao P, Niu QS, Wang ZB, Cao DP: Synthesis of thermosensitive micelles based on poly( N -isopropylacrylamide) and poly( L -alanine) for controlled release of adriamycin. / Chem Eng J 2010, 159:257-63. CrossRef
    13. Inoue T, Chen GH, Nakamae K, Hoffman AS: Temperature sensitivity of a hydrogel network containing different LCST oligomers grafted to the hydrogel backbone. / Polymer Gels and Networks 1997, 5:561-75. CrossRef
    14. Wang ZC, Xu XD, Chen CS, Wang GR, Cheng SX, Zhang XZ, Zhu RX: In situ formation of thermosensitive P(NIPAAm-co-GMA)/PEI hydrogels. / React Funct Polym 2009, 69:14-9. CrossRef
    15. Karg M, Hellweg T: New “smart-poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. / Curr Opin Colloid In 2009, 14:438-50. CrossRef
    16. Contreras-Cáceres R, Pacifico J, Pastoriza-Santos I, Perez-Juste J, Fernández-Barbero A, Liz-Marzán LM: Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth. / Adv Funct Mater 2009, 19:3070-076. CrossRef
    17. Chen T, Chang DP, Zhang JM, Jordan R, Zauscher S: Manipulating the motion of gold aggregates using stimulus-responsive patterned polymer brushes as a motor. / Adv Funct Mater 2012, 22:429-34. CrossRef
    18. Li WY, Cai X, Kim CH, Sun GR, Zhang Y, Deng R, Yang MX, Chen JY, Achilefu S, Wang LV, Xia YN: Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. / Nanoscale 2011, 3:1724-730. CrossRef
    19. Zhao XQ, Wang TX, Liu W, Wang CD, Wang D, Shang T, Shen LH, Ren L: Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. / J Mater Chem 2011, 21:7240-247. CrossRef
    20. Sau TK, MurPhy CJ: Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. / J Am Chem Soc 2004, 126:8648-649. CrossRef
    21. Tempesti TC, Alvarez MG, Durantini EN: Synthesis and photodynamic properties of amphiphilic A 3 B-phthalocyanine derivatives bearing N-heterocycles as potential cationic phototherapeutic agents. / Dyes Pigments 2011, 91:6-2. CrossRef
    22. Douglas KL, Piccirillo CA, Tabrizian M: Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. / Eur J Pharm Biopharm 2008, 68:676-87. CrossRef
    23. Tu J, Wang TX, Shi W, Wu GS, Tian XH, Wang YH, Ge DT, Ren L: Multifunctional ZnPc-loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape. / Biomaterials 2012, 33:7903-914. CrossRef
    24. Siskou IC, Rekka EA, Kourounakis AP, Chrysselis MC, Tsiakitzis K, Kourounakis PN: Design and study of some novel ibuprofen derivatives with potential nootropic and neuroprotective properties. / Bioorg Med Chem Lett 2007, 15:951-61. CrossRef
    25. Pomroy NC, Deber CM: Solubilization of hydrophobic peptides by reversible cysteine PEGylation. / Biochem Bioph Res Co 1998, 245:618-21. CrossRef
    26. Singh N, Lyon LA: Au nanoparticle templated synthesis of pNIPAm nanogels. / Chem Mater 2007, 19:719-26. CrossRef
    27. Leedham TJ, Powell DB, Scott JGV: Infrared and Raman spectra of 1,5-cyclooctadiene complexes of copper (?), silver (?), gold (?), and gold (III), and the nature of the gold compounds. / Spectrochimi Acta A 1973, 29:559-65. CrossRef
    28. Levin CS, Janesko BJ, Bardhan R, Scuseria GE, Hartgerink JD, Halas NJ: Chain-length-dependent vibrational resonances in alkanethiol self-assembled monolayers observed on plasmonic nanoparticle substrates. / Nano Lett 2006, 6:2617-621. CrossRef
    29. Feil H, Bae YH, Jan FJ, Kim SW: Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N -isopropylacrylamide copolymers. / Macromolecules 1993, 26:2496-500. CrossRef
    30. Kawano T, Niidome Y, Mori T, Katayama Y, Niidome T: PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser. / Bioconjugate Chem 2009, 20:209-12. CrossRef
    31. Palewska K, Sujka M, Urasińska-W?jcik B, Sworakowski J, Lipiński J, Ne?p?rek S, Raku?an J, Karásková M: Light-induced effects in sulfonated aluminum phthalocyanines - potential photosensitizers in the photodynamic therapy spectroscopic and kinetic study. / J Photoch Photobio A 2008, 197:1-2. CrossRef
    32. Lopez RF, Lange N, Guy R, Bentley MV: Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters. / Adv Drug Deliv Rev 2004, 56:77-4. CrossRef
    33. Cerńy JR, Karásková M, San JR, Ne?p?rek S: Reactive oxygen species produced by irradiation of some phthalocyanine derivatives. / J Photochem Photobiol A 2010, 210:82-8. CrossRef
  • 作者单位:Ting Shang (1)
    Cai-ding Wang (1)
    Lei Ren (1) (2)
    Xin-hua Tian (3)
    Dong-hui Li (4)
    Xue-bin Ke (1)
    Min Chen (1)
    An-qi Yang (1)

    1. Department of Biomaterials, Research Center of Biomedical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
    2. State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
    3. Neurosurgical Department of Affiliated Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
    4. College of Medicine, Xiamen University, Xiamen, 361005, China
  • ISSN:1556-276X
文摘
A near-infrared (NIR)-responsive Aurod@pNIPAAm-PEGMA nanogel was synthesized in two steps, growing a PEGMA monolayer on the surface of gold nanorods (AuNRs), followed by in situ polymerization and cross-linking of N-iso-propylacrylamide (NIPAAm) and poly-(ethylene glycol)-methacrylate (PEGMA). The AuNRs and Aurod@pNIPAAm-PEGMA nanogel were characterized by UV–vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy, respectively. The lower critical solution temperature of the Aurod@pNIPAAm-PEGMA nanogel could be tuned by changing the molar ratio of NIPAAm/PEGMA. The NIR-mediated drug release behavior of the Aurod@pNIPAAm-PEGMA nanogel was studied with zinc phthalocyanines (ZnPc4) as a drug model. It was also demonstrated that the loaded ZnPc4 could keep the capability of generating singlet oxygen, and the in vitro study showed a great photodynamic therapy (PDT) effect on Hela cells. It thus indicated the potential of this Aurod@pNIPAAm-PEGMA nanogel for application as a drug carrier in PDT, which might make contributions to oncotherapy.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.