Multiple teleportation via partially entangled GHZ state
详细信息    查看全文
  • 作者:Pei-Ying Xiong ; Xu-Tao Yu ; Hai-Tao Zhan ; Zai-Chen Zhang
  • 关键词:auxiliary particle ; partially entangled GHZ state ; multiple teleportation protocol
  • 刊名:Frontiers of Physics
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:11
  • 期:4
  • 全文大小:288 KB
  • 参考文献:1.C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)CrossRef ADS MathSciNet
    2.D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)CrossRef ADS
    3.D. Bouwmeester, K. Mattle, J. W. Pan, H. Weinfurter, A. Zeilinger, and M. Zukowski, Experimental quantum teleportation of arbitrary quantum states, Appl. Phys. B 67(6), 749 (1998)CrossRef ADS
    4.J.W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Experimental entanglement swapping: Entangling photons that never interacted, Phys. Rev. Lett. 80(18), 3891 (1998)CrossRef ADS MathSciNet
    5.M. Ikram, S. Y. Zhu, and M. S. Zubairy, Quantum teleportation of an entangled state, Phys. Rev. A 62(2), 022307 (2000)CrossRef ADS MathSciNet
    6.P. van Loock and S. L. Braunstein, Multipartite entanglement for continuous variables: A quantum teleportation network, Phys. Rev. Lett. 84(15), 3482 (2000)CrossRef ADS
    7.S. T. Cheng, C. Y. Wang, and M. H. Tao, Quantum communication for wireless wide-area networks, IEEE J. Sel. Areas Comm. 23(7), 1424 (2005)CrossRef
    8.F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)CrossRef ADS
    9.L. Marinatto and T. Weber, Which kind of two-particle states can be teleported through a three-particle quantum channel, Found. Phys. Lett. 13(2), 119 (2000)CrossRef MathSciNet
    10.H. Lu and G. C. Guo, Teleportation of a two-particle entangled state via entanglement swapping, Phys. Rev. Lett. 276, 6–209 (2000)MathSciNet
    11.M. Cao and S. Q. Zhu, Probabilistic teleportation of n particle state via n pairs of entangled particles, Commun. Theor. Phys. 43(1), 69 (2005)CrossRef ADS MathSciNet
    12.F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement, Phys. Rev. A 72(2), 022338 (2005)CrossRef ADS
    13.T. Gao, Quantum logic networks for probabilistic and controlled teleportation of unknown quantum states, Commun. Theor. Phys. 42(2), 223 (2004)CrossRef
    14.P. Espoukeh and P. Pedram, Quantum teleportation through noisy channels with multi-qubit GHZ states, Quantum Inform. Process. 13(8), 1789 (2014)CrossRef ADS MathSciNet
    15.Y. Chang, S. B. Zhang, L. L. Yan, and J. Li, Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad, Chin. Sci. Bull. 59(23), 2835 (2014)CrossRef
    16.X. F. Zou and D. W. Qiu, Three-step semiquantum secure direct communication protocol, Sci. China - Phys. Mech. Astron. 57(9), 1696 (2014)CrossRef ADS
    17.L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)CrossRef
    18.C. Perumangatt, A. Abdul Rahim, G. R. Salla, S. Prabhakar, G. K. Samanta, G. Paul, and R. P. Singh, Threeparticle hyper-entanglement: Teleportation and quantum key distribution, Quantum Inform. Process. 14(10), 3813 (2015)CrossRef ADS
    19.S. Sazim, S. Adhikari, S. Banerjee, and T. Pramanik, Quantification of entanglement of teleportation in arbitrary dimensions, Quantum Inform. Process. 13(4), 863 (2014)CrossRef ADS MathSciNet
    20.X. L. Wang, X. D. Cai, Z. E. Su, M.C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)CrossRef ADS
    21.Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5, 13453 (2015)CrossRef ADS
    22.C. Y. Lu, X. Q. Zhou, O. Guhne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)CrossRef
    23.X. C. Yao, T. X. Wang, P. Xu, H. Lu, G. S. Pan, X. H. Bao, C. Z. Peng, C. Y. Lu, Y. A. Chen, and J. W. Pan, Observation of eight-photon entanglement, Nat. Photonics 6(4), 225 (2012)CrossRef ADS
    24.Q. Zhang, A. Goebel, C.Wagenknecht, Y. A. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, Experimental quantum teleportation of a two-qubit composite System, Nat. Phys. 2(10), 678 (2006)CrossRef
    25.X. M. Jin, J. G. Ren, B. Yang, Z. H. Yi, F. Zhou, X. F. Xu, S. K. Wang, D. Yang, Y. F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C. Z. Peng, and J. W. Pan, Experimental free-space quantum teleportation, Nat. Photonics 4(6), 376 (2010)CrossRef ADS
    26.J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre free-space channels, Nature 488(7410), 185 (2012)CrossRef ADS
    27.J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, Experimental realization of freely propagating teleported qubits, Nature 421(6924), 721 (2003)CrossRef ADS
    28.M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys. 8(4), 357 (2013)CrossRef
    29.X. L. Su, S. H. Hao, Y. P. Zhao, X. W. Deng, X. J. Jia, C. D. Xie, and K. C. Peng, Demonstration of eight-partite twodiamond shape cluster state for continuous variables, Front. Phys. 8(1), 20 (2013)CrossRef
    30.F. L. Yan and T. Yan, Probabilistic teleportation via a nonmaximally entangled GHZ state, Chin. Sci. Bull. 55(10), 902 (2010)CrossRef
    31.Z. X. Man, Y. J. Xia, and N. B. An, Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states, Eur. Phys. J. D 42(2), 333 (2007)CrossRef ADS MathSciNet
    32.D. P. Tian, Y. J. Tao, and M. Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state, Sci. China G 51(10), 1523 (2008)CrossRef
    33.T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)CrossRef ADS
    34.Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)CrossRef ADS
    35.B. Gu, Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics, J. Opt. Soc. Am. B 29(7), 1685 (2012)CrossRef ADS
    36.X. T. Yu, J. Xu, and Z. C. Zhang, Distributed wireless quantum communication networks, Chin. Phys. B 22(9), 090311 (2013)CrossRef ADS
    37.J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)CrossRef ADS
    38.J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, Experimental entanglement purification of arbitrary unknown states, Nature 423(6938), 417 (2003)CrossRef ADS
    39.S. Y. Zhao, J. Liu, L. Zhou, and Y.B. Sheng, Two-step entanglement concentration for arbitrary electronic cluster state, Quantum Inform. Process. 12(12), 3633 (2013)CrossRef ADS MathSciNet
    40.L. Zhou, Y. B. Sheng, W. W. Cheng, L. Y. Gong, and S. M. Zhao, Efficient entanglement concentration for arbitrary less-entangled NOON states, Quantum Inform. Process. 12(2), 1307 (2013)CrossRef ADS MathSciNet
    41.Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)CrossRef ADS
    42.X. Yan, Y. F. Yu, and Z. M. Zhang, Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9(5), 640 (2014)CrossRef
    43.K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multi-hop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)CrossRef ADS
    44.X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)CrossRef
    45.L. H. Shi, X. T. Yu, X. F. Cai, Y. X. Gong, and Z. C. Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B 24(5), 050308 (2015)CrossRef ADS
    46.R. Fortes and G. Rigolin, Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states, Ann. Phys. 336(9), 517 (2012)ADS
  • 作者单位:Pei-Ying Xiong (1)
    Xu-Tao Yu (1)
    Hai-Tao Zhan (1)
    Zai-Chen Zhang (2)

    1. State Key Lab of Millimeter Waves, Southeast University, Nanjing, 210096, China
    2. National Mobile Communications Research Laboratory, Southeast University, Nanjing, 210096, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0470
文摘
Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger–Horne–Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations. Keywords auxiliary particle partially entangled GHZ state multiple teleportation protocol
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.