Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application
详细信息    查看全文
  • 作者:Qing Wan ; Meiying Liu ; Yili Xie ; Jianwen Tian ; Qiang Huang…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:52
  • 期:1
  • 页码:504-518
  • 全文大小:1,712 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
  • 卷排序:52
文摘
Graphene oxide (GO)-based polymer nanocomposites were fabricated in aqueous solution via a novel strategy combination of mussel-inspired chemistry and Michael addition reaction. These GO-based polymer nanocomposites were used as efficient absorbents for the removal of organic dyes methylene blue (MB) from the aqueous solution. The successful preparation of GO-based polymer nanocomposites (GO-PDA-PSPSH) was confirmed by a number of characterization techniques in detail. Furthermore, a series of influential factors such as contact time, initial solution pH, and temperature were investigated and optimized. The optimal adsorption time of GO-PDA-PSPSH nanocomposites toward MB was 58 min. The maximum adsorption efficiency was occurred at pH 7. On the other hand, accompanying with the elevation of temperature, removal efficiency of GO-PDA-PSPSH nanocomposites was significantly increased, indicating that the adsorption process of MB by GO-PDA-PSPSH nanocomposites was endothermic. More importantly, the adsorption capability of GO-PDA-PSPSH nanocomposites was obviously greater than many other GO-based nanocomposites. Taken together, we have developed a facile biomimetic strategy for the preparation of GO-based polymer nanocomposites, which showed excellent adsorption capability toward MB and are promising for environmental adsorption applications.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.