Analysis of Nonradiative Carrier Recombination Processes in InN Films by Mid-infrared Spectroscopy
详细信息    查看全文
  • 作者:D. Imai (1)
    Y. Ishitani (1)
    M. Fujiwara (1)
    X. Q. Wang (2)
    K. Kusakabe (3)
    A. Yoshikawa (3)
  • 关键词:InN ; nonradiative recombination ; deep states ; carrier transport process ; thermal activation process
  • 刊名:Journal of Electronic Materials
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:42
  • 期:5
  • 页码:875-881
  • 全文大小:823KB
  • 参考文献:1. Y. Ishitani, H. Masuyama, W. Terashima, M. Yoshitani, N. Hashimoto, S.B. Che, and A. Yoshikawa, / Phys. Stat. Sol. C 2, 2276 (2005). CrossRef
    2. Y. Ishitani, M. Fujiwara, X. Wang, S.B. Che, and A. Yoshikawa, / Appl. Phys. Lett. 92, 251901 (2008). CrossRef
    3. Y. Ishitani, K. Kato, H. Ogiwara, S.B. Che, A. Yoshikawa, and X.Q. Wang, / J. Appl. Phys. 106, 113515 (2009). CrossRef
    4. R.E. Jones, K.M. Yu, S.Y. Li, W. Walukiewicz, J.W. Ager, E.E. Haller, H. Lu, and W.J. Schaff, / Phys. Rev. Lett. 96, 125505 (2006). CrossRef
    5. X.Q. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa, / Appl. Phys. Lett. 91, 242111 (2007). CrossRef
    6. D. Imai, Y. Ishitani, M. Fujiwara, X.Q. Wang, K. Kusakabe, and A. Yoshikawa, / Appl. Phys. Lett. 98, 181908 (2011). CrossRef
    7. D. Imai, Y. Ishitani, M. Fujiwara, X.Q. Wang, K. Kusakabe, and A. Yoshikawa, / Phys. Stat. Sol. B 249, 472 (2012). CrossRef
    8. X.Q. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa, / Appl. Phys. Lett. 90, 201913 (2007). CrossRef
    9. A. Yoshikawa, X.Q. Wang, Y. Ishitani, and A. Uedono, / Phys. Stat. Sol. A 207, 1011 (2010). CrossRef
    10. Y. Ishitani, M. Fujiwara, X.Q. Wang, S.-B. Che, and A. Yoshikawa, / Phys. Stat. Sol. C 6, S397 (2009). CrossRef
    11. M. Fujiwara, Y. Ishitani, X.Q. Wang, S.-B. Che, and A. Yoshikawa, / Appl. Phys. Lett. 93, 231903 (2008). CrossRef
    12. H. Ahn, K.-J. Yu, Y.-L. Hong, and S. Gwo, / Appl. Phys. Lett. 97, 062110 (2010). CrossRef
    13. G. Hatakoshi and S. Nunoue, / Appl. Phys. Express 5, 071001 (2012). CrossRef
    14. F. Chen, A.N. Cartwright, H. Lu, and W.J. Schaff, / Appl. Phys. Lett. 83, 24 (2003). CrossRef
    15. H.-C. Liu, C.-H. Hsu, W.-C. Chou, W.-K. Chen, and W.-H. Chang, / Phys. Rev. B 80, 193203 (2009). CrossRef
    16. G.F. Brown, J.W. Ager III, W. Walukiewicz, W.J. Schaff, and J. Wu, / Appl. Phys. Lett. 93, 262105 (2008). CrossRef
    17. F. Chen, A.N. Cartwright, H. Lu, and W.J. Schaff, / Appl. Phys. Lett. 87, 212104 (2005). CrossRef
    18. J. Wu, W. Walukiewicz, S.X. Li, R. Armitage, J.C. Ho, E.R. Weber, E.E. Haller, H. Lu, W.J. Schaff, A. Barcz, and R. Jakiela, / Appl. Phys. Lett. 84, 2805 (2004). CrossRef
    19. Y. Shinozuka, / Jpn. J. Appl. Phys. 32, 4560 (1993). CrossRef
    20. X.D. Pu, J. Chen, W.Z. Shen, H. Ogawa, and Q.X. Guo, / J. Appl. Phys. 98, 033527 (2005). CrossRef
    21. A.X. Levander, T. Tong, K.M. Yu, J. Shu, D. Fu, R. Zhang, H. Lu, W.J. Schaff, O. Dubon, W. Walukiewicz, D.G. Cahill, and J. Wu, / Appl. Phys. Lett. 98, 012108 (2011). CrossRef
    22. A. Uedono, H. Nakamori, K. Narita, J. Suzuki, X. Wang, S.-B. Che, Y. Ishitani, A. Yoshikawa, and S. Ishibashi, / J. Appl. Phys. 105, 054507 (2009). CrossRef
  • 作者单位:D. Imai (1)
    Y. Ishitani (1)
    M. Fujiwara (1)
    X. Q. Wang (2)
    K. Kusakabe (3)
    A. Yoshikawa (3)

    1. Graduate School of Electronic and Electric Engineering, Chiba University, Chiba, 263-8522, Japan
    2. State Key Laboratory of Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
    3. Center for SMART Green Innovation Research, Chiba University, Chiba, 263-8522, Japan
  • ISSN:1543-186X
文摘
We investigate the reduction in the efficiency of band-edge radiative recombination in InN by two carrier recombination processes via mid-gap states: radiative recombination via deep states and nonradiative recombination (NR). Because of the small band-gap energy value and the existence of the surface electron accumulation layer, the carrier transition processes via deep states cannot be observed easily. We address this problem by using mid-infrared photoluminescence (PL) measurements, and observe an emission peak around 0.32?eV at room temperature, which we interpret as being caused by transition processes via deep-defect states. Since this emission is weaker than the band-edge emission, the dominant carrier recombination process is concluded to be NR by phonon emission. The NR rate is known to be determined by the NR defect density, carrier transport processes to NR defects, and thermal activation processes of carriers. Carrier transport and capture processes by NR defects are investigated using p-type samples for various carrier mobility values. It is concluded that the NR rate is highly affected by the carrier transport, and that the candidates for the NR defect species are point defects and complexes of acceptor nature. We have also observed the correlation between the thermal conductivity and the band-edge PL intensity. As a result, we have found that the NR rate is highly affected by the carrier transport and thermal activation processes in InN.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.