Recombinant pharmaceuticals from microbial cells: a 2015 update
详细信息    查看全文
  • 作者:Laura Sanchez-Garcia ; Lucas Martín ; Ramon Mangues…
  • 关键词:Recombinant proteins ; Protein drugs ; Recombinant DNA ; Fusion proteins ; Biopharmaceuticals
  • 刊名:Microbial Cell Factories
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:15
  • 期:1
  • 全文大小:1,189 KB
  • 参考文献:1.Vajo Z, Fawcett J, Duckworth WC. Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocr Rev. 2001;22:706–17.CrossRef
    2.Takeda A, Cooper K, Bird A, Baxter L, Frampton GK, Gospodarevskaya E, et al. Recombinant human growth hormone for the treatment of growth disorders in children: a systematic review and economic evaluation. Health Technol Assess. 2010;14:1–4.CrossRef
    3.Cutting GR. Modifier genetics: cystic fibrosis. Annu Rev Genomics Hum Genet. 2005;6:237–60.CrossRef
    4.Weatherall DJ. Phenotype–genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001;2:245–55.CrossRef
    5.Powell JS. Lasting power of new clotting proteins. Hematology Am Soc Hematol Educ Program. 2014;2014:355–63.CrossRef
    6.Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med. 2002;4:45–61.CrossRef
    7.Savic S, McDermott MF. Clinical genetics in 2014: new monogenic diseases span the immunological disease continuum. Nat Rev Rheumatol. 2015;11:67–8.CrossRef
    8.Assenberg R, Wan PT, Geisse S, Mayr LM. Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol. 2013;23:393–402.CrossRef
    9.Global Data 2015. http://​www.​globaldata.​com . 2015.
    10.Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029–38.CrossRef
    11.Pene F, Courtine E, Cariou A, Mira JP. Toward theragnostics. Crit Care Med. 2009;37:S50–8.CrossRef
    12.Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27:297–306.CrossRef
    13.Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs. 2010;1:116–31.CrossRef
    14.Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32:992–1000.CrossRef
    15.Ferrer-Miralles N, Villaverde A. Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb Cell Fact. 2013;12:113.CrossRef
    16.Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vazquez F, et al. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv. 2013;31:140–53.CrossRef
    17.Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A. Microbial factories for recombinant pharmaceuticals. Microb Cell Fact. 2009;8:17.CrossRef
    18.Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30:1158–70.CrossRef
    19.Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed M, Ramadan HI, et al. Cell factories for insulin production. Microb Cell Fact. 2014;13:141.CrossRef
    20.Overton TW. Recombinant protein production in bacterial hosts. Drug Discov Today. 2014;19:590–601.CrossRef
    21.Chen R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv. 2012;30:1102–7.CrossRef
    22.van Dijl JM, Hecker M. Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact. 2013;12:3.CrossRef
    23.Cano-Garrido O, Rueda FL, Sanchez-Garcia L, Ruiz-Avila L, Bosser R, Villaverde A, et al. Expanding the recombinant protein quality in Lactococcus lactis. Microb Cell Fact. 2014;13:167.CrossRef
    24.Su X, Schmitz G, Zhang M, Mackie RI, Cann IK. Heterologous gene expression in filamentous fungi. Adv Appl Microbiol. 2012;81:1–61.CrossRef
    25.Decker EL, Reski R. Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng. 2008;31:3–9.CrossRef
    26.Decker EL, Reski R. Moss bioreactors producing improved biopharmaceuticals. Curr Opin Biotechnol. 2007;18:393–8.CrossRef
    27.Basile G, Peticca M. Recombinant protein expression in Leishmania tarentolae. Mol Biotechnol. 2009;43:273–8.CrossRef
    28.Kushnir S, Gase K, Breitling R, Alexandrov K. Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expr Purif. 2005;42:37–46.CrossRef
    29.Breitling R, Klingner S, Callewaert N, Pietrucha R, Geyer A, Ehrlich G, et al. Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr Purif. 2002;25:209–18.CrossRef
    30.Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B, Kohl TA, et al. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Fact. 2015;14:57.CrossRef
    31.Ueda T, Akuta T, Kikuchi-Ueda T, Imaizumi K, Ono Y. Improving the soluble expression and purification of recombinant human stem cell factor (SCF) in endotoxin-free Escherichia coli by disulfide shuffling with persulfide. Protein Expr Purif. 2016;120:99–105.CrossRef
    32.Rueda F, Cano-Garrido O, Mamat U, Wilke K, Seras-Franzoso J, Garcia-Fruitos E, et al. Production of functional inclusion bodies in endotoxin-free Escherichia coli. Appl Microbiol Biotechnol. 2014;98:9229–38.CrossRef
    33.Taguchi S, Ooi T, Mizuno K, Matsusaki H. Advances and needs for endotoxin-free production strains. Appl Microbiol Biotechnol. 2015;99:9349–60.CrossRef
    34.Rader RA. (Re)defining biopharmaceutical. Nat Biotechnol. 2008;26:743–51.CrossRef
    35.Walsh G. New biopharmaceuticals. Biopharm Int. 2012;25:34–8.
    36. Anonymous. Human insulin receives FDA approval. FDA Drug Bull. 1982;12:18–9.
    37.Johnson IS. Human insulin from recombinant DNA technology. Science. 1983;219:632–7.CrossRef
    38.Chabner BA, Roberts TG Jr. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72.CrossRef
    39.Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278–87.CrossRef
    40.Patel A, Sun W. Ziv-aflibercept in metastatic colorectal cancer. Biologics. 2014;8:13–25.
    41.Manoukian G, Hagemeister F. Denileukin diftitox: a novel immunotoxin. Expert Opin Biol Ther. 2009;9:1445–51.CrossRef
    42.Ho VT, Zahrieh D, Hochberg E, Micale E, Levin J, Reynolds C, et al. Safety and efficacy of denileukin diftitox in patients with steroid–refractory acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood. 2004;104:1224–6.CrossRef
    43.Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int. 2014;2014:180549.CrossRef
  • 作者单位:Laura Sanchez-Garcia (1) (2) (3)
    Lucas Martín (4)
    Ramon Mangues (5)
    Neus Ferrer-Miralles (1) (2) (3)
    Esther Vázquez (1) (2) (3)
    Antonio Villaverde (1) (2) (3)

    1. Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
    2. Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
    3. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Bellaterra, Cerdanyola del Vallès, Spain
    4. Technology Transfer Office, Edifici Eureka, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
    5. Institut d’Investigacions Biomèdiques Sant Pau, Josep Carreras Research Institute and CIBER-BBN, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Applied Microbiology
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1475-2859
文摘
Diabetes, growth or clotting disorders are among the spectrum of human diseases related to protein absence or malfunction. Since these pathologies cannot be yet regularly treated by gene therapy, the administration of functional proteins produced ex vivo is required. As both protein extraction from natural producers and chemical synthesis undergo inherent constraints that limit regular large-scale production, recombinant DNA technologies have rapidly become a choice for therapeutic protein production. The spectrum of organisms exploited as recombinant cell factories has expanded from the early predominating Escherichia coli to alternative bacteria, yeasts, insect cells and especially mammalian cells, which benefit from metabolic and protein processing pathways similar to those in human cells. Up to date, around 650 protein drugs have been worldwide approved, among which about 400 are obtained by recombinant technologies. Other 1300 recombinant pharmaceuticals are under development, with a clear tendency towards engineered versions with improved performance and new functionalities regarding the conventional, plain protein species. This trend is exemplified by the examination of the contemporary protein-based drugs developed for cancer treatment. Keywords Recombinant proteins Protein drugs Recombinant DNA Fusion proteins Biopharmaceuticals
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.