SaOS2 Osteosarcoma Cells as an In Vitro Model for Studying the Transition of Human Osteoblasts to Osteocytes
详细信息    查看全文
  • 作者:Matthew Prideaux (1)
    Asiri R. Wijenayaka (1)
    Duminda D. Kumarasinghe (1)
    Renee T. Ormsby (1)
    Andreas Evdokiou (2)
    David M. Findlay (1)
    Gerald J. Atkins (1)
  • 关键词:SaOS2 ; Osteoblast ; Osteocyte ; Differentiation ; Cell culture ; SOST ; RANKL ; PTH
  • 刊名:Calcified Tissue International
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:95
  • 期:2
  • 页码:183-193
  • 全文大小:2,275 KB
  • 参考文献:1. Turner CH, Robling AG, Duncan RL, Burr DB (2002) Do bone cells behave like a neuronal network? Calcif Tissue Int 70:435鈥?42 CrossRef
    2. Barragan-Adjemian C, Nicolella D, Dusevich V, Dallas MR, Eick JD, Bonewald LF (2006) Mechanism by which MLO-A5 late osteoblasts/early osteocytes mineralize in culture: similarities with mineralization of lamellar bone. Calcif Tissue Int 79:340鈥?53 CrossRef
    3. Huffman NT, Keightley JA, Chaoying C, Midura RJ, Lovitch D, Veno PA, Dallas SL, Gorski JP (2007) Association of specific proteolytic processing of bone sialoprotein and bone acidic glycoprotein-75 with mineralization within biomineralization foci. J Biol Chem 282:26002鈥?6013 CrossRef
    4. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310鈥?315 CrossRef
    5. Atkins GJ, Rowe PS, Lim HP, Welldon KJ, Ormsby R, Wijenayaka AR, Zelenchuk L, Evdokiou A, Findlay DM (2011) Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res 26:1425鈥?436 CrossRef
    6. Rowe PS (2004) The wrickkened pathways of FGF23, MEPE and PHEX. Crit Rev Oral Biol Med 15:264鈥?81 CrossRef
    7. Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell鈥?and more. Endocr Rev 34:658鈥?90 CrossRef
    8. Atkins GJ, Findlay DM (2012) Osteocyte regulation of bone mineral: a little give and take. Osteoporos Int 23(8):2067鈥?079 CrossRef
    9. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2003) Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res 18:1657鈥?663 CrossRef
    10. Mullender MG, Tan SD, Vico L, Alexandre C, Klein-Nulend J (2005) Differences in osteocyte density and bone histomorphometry between men and women and between healthy and osteoporotic subjects. Calcif Tissue Int 77:291鈥?96 CrossRef
    11. Frank JD, Ryan M, Kalscheur VL, Ruaux-Mason CP, Hozak RR, Muir P (2002) Aging and accumulation of microdamage in canine bone. Bone 30:201鈥?06 CrossRef
    12. Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ, Bonewald LF (2006) E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26:4539鈥?552 CrossRef
    13. Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 16:2017鈥?026 CrossRef
    14. Igarashi M, Kamiya N, Ito K, Takagi M (2002) In situ localization and in vitro expression of osteoblast/osteocyte factor 45 mRNA during bone cell differentiation. Histochem J 34:255鈥?63 CrossRef
    15. Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. Faseb J 19:1842鈥?844
    16. Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF (1997) Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res 12:2014鈥?023 CrossRef
    17. Zhao S, Zhang YK, Harris S, Ahuja SS, Bonewald LF (2002) MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res 17:2068鈥?079 CrossRef
    18. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ (2011) Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway. PLoS ONE 6:e25900 CrossRef
    19. Fedde KN (1992) Human osteosarcoma cells spontaneously release matrix-vesicle-like structures with the capacity to mineralize. Bone Miner 17:145鈥?51 CrossRef
    20. McQuillan DJ, Richardson MD, Bateman JF (1995) Matrix deposition by a calcifying human osteogenic sarcoma cell line (SAOS-2). Bone 16:415鈥?26
    21. Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z, Shull S, Mann K, Rodan GA (1987) Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res 47:4961鈥?966
    22. Rao LG, Liu LJ, Murray TM, McDermott E, Zhang X (2003) Estrogen added intermittently, but not continuously, stimulates differentiation and bone formation in SaOS-2 cells. Biol Pharm Bull 26:936鈥?45 CrossRef
    23. Atkins GJ, Welldon KJ, Halbout P, Findlay DM (2009) Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int 20:653鈥?64 CrossRef
    24. Kumarasinghe DD, Sullivan T, Kuliwaba JS, Fazzalari NL, Atkins GJ (2012) Evidence for the dysregulated expression of TWIST1, TGF尾1 and SMAD3 in differentiating osteoblasts from primary hip osteoarthritis patients. Osteoarthr Cartil 20:1357鈥?366 CrossRef
    25. Atkins GJ, Welldon KJ, Holding CA, Haynes DR, Howie DW, Findlay DM (2009) The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. Biomaterials 30:3672鈥?681 CrossRef
    26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods 25:402鈥?08 CrossRef
    27. Atkins GJ, Welldon KJ, Wijenayaka AR, Bonewald LF, Findlay DM (2009) Vitamin K promotes mineralization, osteoblast-to-osteocyte transition, and an anticatabolic phenotype by {gamma}-carboxylation-dependent and -independent mechanisms. Am J Physiol Cell Physiol 297:C1358鈥揅1367 CrossRef
    28. Akesson K, Grynpas MD, Hancock RG, Odselius R, Obrant KJ (1994) Energy-dispersive X-ray microanalysis of the bone mineral content in human trabecular bone: a comparison with ICPES and neutron activation analysis. Calcif Tissue Int 55:236鈥?39 CrossRef
    29. Lutter AH, Hempel U, Wolf-Brandstetter C, Garbe AI, Goettsch C, Hofbauer LC, Jessberger R, Dieter P (2010) A novel resorption assay for osteoclast functionality based on an osteoblast-derived native extracellular matrix. J Cell Biochem 109:1025鈥?032
    30. Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, Milz S (2004) Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res 24:3743鈥?748
    31. Postiglione L, Di Domenico G, Ramaglia L, Montagnani S, Salzano S, Di Meglio F, Sbordone L, Vitale M, Rossi G (2003) Behavior of SaOS-2 cells cultured on different titanium surfaces. J Dent Res 82:692鈥?96 CrossRef
    32. Zhang Y, Kuipers AL, Yerges-Armstrong LM, Nestlerode CS, Jin Z, Wheeler VW, Patrick AL, Bunker CH, Zmuda JM (2010) Functional and association analysis of frizzled 1 (FZD1) promoter haplotypes with femoral neck geometry. Bone 46:1131鈥?137 CrossRef
    33. Gronthos S, Zannettino AC, Graves SE, Ohta S, Hay SJ, Simmons PJ (1999) Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J Bone Miner Res 14:47鈥?6 CrossRef
    34. Mikuni-Takagaki Y, Kakai Y, Satoyoshi M, Kawano E, Suzuki Y, Kawase T, Saito S (1995) Matrix mineralization and the differentiation of osteocyte-like cells in culture. J Bone Miner Res 10:231鈥?42 CrossRef
    35. Irie K, Ejiri S, Sakakura Y, Shibui T, Yajima T (2008) Matrix mineralization as a trigger for osteocyte maturation. J Histochem Cytochem 56:561鈥?67 CrossRef
    36. Prideaux M, Loveridge N, Pitsillides AA, Farquharson C (2012) Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation. PLoS ONE 7:e36786 CrossRef
    37. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267鈥?276 CrossRef
    38. Sevetson B, Taylor S, Pan Y (2004) Cbfa1/RUNX2 directs specific expression of the sclerosteosis gene (SOST). J Biol Chem 279:13849鈥?3858 CrossRef
    39. Galea GL, Sunters A, Meakin LB, Zaman G, Sugiyama T, Lanyon LE, Price JS (2011) Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett 585:2450鈥?454 CrossRef
    40. Westbroek I, De Rooij KE, Nijweide PJ (2002) Osteocyte-specific monoclonal antibody MAb OB7.3 is directed against Phex protein. J Bone Miner Res 17:845鈥?53 CrossRef
    41. Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF (2011) Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 26:2634鈥?646 CrossRef
    42. Welldon KJ, Findlay DM, Evdokiou A, Ormsby RT, Atkins GJ (2013) Calcium induces pro-anabolic effects on human primary osteoblasts associated with acquisition of mature osteocyte markers. Mol Cell Endocrinol 376:85鈥?2 CrossRef
    43. Mundlos S (1994) Expression patterns of matrix genes during human skeletal development. Prog Histochem Cytochem 28:1鈥?7 CrossRef
    44. Dacic S, Kalajzic I, Visnjic D, Lichtler AC, Rowe DW (2001) Col1a1-driven transgenic markers of osteoblast lineage progression. J Bone Miner Res 16:1228鈥?236 CrossRef
    45. Paic F, Igwe JC, Nori R, Kronenberg MS, Franceschetti T, Harrington P, Kuo L, Shin DG, Rowe DW, Harris SE, Kalajzic I (2009) Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45:682鈥?92 CrossRef
    46. Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233鈥?239 CrossRef
    47. Sadikovic B, Thorner P, Chilton-Macneill S, Martin JW, Cervigne NK, Squire J, Zielenska M (2010) Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer 10:202 CrossRef
    48. Nathan SS, Pereira BP, Zhou YF, Gupta A, Dombrowski C, Soong R, Pho RW, Stein GS, Salto-Tellez M, Cool SM, van Wijnen AJ (2009) Elevated expression of Runx2 as a key parameter in the etiology of osteosarcoma. Mol Biol Rep 36:153鈥?58 CrossRef
    49. Pereira BP, Zhou Y, Gupta A, Leong DT, Aung KZ, Ling L, Pho RW, Galindo M, Salto-Tellez M, Stein GS, Cool SM, van Wijnen AJ, Nathan SS (2009) Runx2, p53, and pRB status as diagnostic parameters for deregulation of osteoblast growth and differentiation in a new pre-chemotherapeutic osteosarcoma cell line (OS1). J Cell Physiol 221:778鈥?88 CrossRef
    50. Hantusch B, Kalt R, Krieger S, Puri C, Kerjaschki D (2007) Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells. BMC Mol Biol 8:20 CrossRef
    51. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261鈥?72 CrossRef
    52. Martin-Villar E, Megias D, Castel S, Yurrita MM, Vilaro S, Quintanilla M (2006) Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci 119:4541鈥?553 CrossRef
    53. Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37:148鈥?58 CrossRef
    54. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O鈥橞rien CA, Manolagas SC, Jilka RL (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577鈥?583 CrossRef
    55. Fermor B, Skerry TM (1995) PTH/PTHrP receptor expression on osteoblasts and osteocytes but not resorbing bone surfaces in growing rats. J Bone Miner Res 10:1935鈥?943 CrossRef
    56. Gao H, Bodine PV, Murrills R, Bex FJ, Bilezikian JP, Morris SA (2002) PTH-dependent adenylyl cyclase activation in SaOS-2 cells: passage dependent effects on G protein interactions. J Cell Physiol 193:10鈥?8 CrossRef
    57. Yu L, van der Valk M, Cao J, Han CY, Juan T, Bass MB, Deshpande C, Damore MA, Stanton R, Babij P (2011) Sclerostin expression is induced by BMPs in human Saos-2 osteosarcoma cells but not via direct effects on the sclerostin gene promoter or ECR5 element. Bone 49:1131鈥?140 CrossRef
    58. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O鈥橞rien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235鈥?241 CrossRef
    59. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231鈥?234 CrossRef
    60. Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X, Dedic C, Maeda A, Lotinun S, Baron R, Pajevic PD (2013) Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem 288:20122鈥?0134 CrossRef
  • 作者单位:Matthew Prideaux (1)
    Asiri R. Wijenayaka (1)
    Duminda D. Kumarasinghe (1)
    Renee T. Ormsby (1)
    Andreas Evdokiou (2)
    David M. Findlay (1)
    Gerald J. Atkins (1)

    1. Bone Cell Biology Group, Centre for Orthopaedic and Trauma Research, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
    2. Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, The University of Adelaide, Woodville, SA, 5011, Australia
  • ISSN:1432-0827
文摘
The central importance of osteocytes in regulating bone homeostasis is becoming increasingly apparent. However, the study of these cells has been restricted by the relative paucity of cell line models, especially those of human origin. Therefore, we investigated the extent to which SaOS2 human osteosarcoma cells can differentiate into osteocyte-like cells. During culture under the appropriate mineralising conditions, SaOS2 cells reproducibly synthesised a bone-like mineralised matrix and temporally expressed the mature osteocyte marker genes SOST, DMP1, PHEX and MEPE and down-regulated expression of RUNX2 and COL1A1. SaOS2 cells cultured in 3D collagen gels acquired a dendritic morphology, characteristic of osteocytes, with multiple interconnecting cell processes. These findings suggest that SaOS2 cells have the capacity to differentiate into mature osteocyte-like cells under mineralising conditions. PTH treatment of SaOS2 cells resulted in strong down-regulation of SOST mRNA expression at all time points tested. Interestingly, PTH treatment resulted in the up-regulation of RANKL mRNA expression only at earlier stages of differentiation. These findings suggest that the response to PTH is dependent on the differentiation stage of the osteoblast/osteocyte. Together, our results demonstrate that SaOS2 cells can be used as a human model to investigate responses to osteotropic stimuli throughout differentiation to a mature osteocyte-like stage.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.