Life Cycle Assessment of Bioenergy and Bio-Based Products from Perennial Grasses Cultivated on Marginal Land in the Mediterranean Region
详细信息    查看全文
  • 作者:Tobias Schmidt ; Ana Luisa Fernando ; Andrea Monti ; Nils Rettenmaier
  • 关键词:Life cycle assessment ; Environmental impacts ; Bioenergy ; Perennial grasses ; Marginal land ; Mediterranean region
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:4
  • 页码:1548-1561
  • 全文大小:601 KB
  • 参考文献:1.United Nations (2015) World population prospects. Key findings and advance tables. 2015 Revision. United Nations Department of Economic and Social Affairs, Population Division, New York, USA
    2.Rettenmaier N, Hienz G (2014) Linkages between socio-economic and environmental impacts of bioenergy. In: Rutz D, Janssen R (eds) Socio-economic impacts bioenergy production. Springer International Publishing Switzerland. doi:10.-007/-78-3-319-03829-2_- . Accessed June 12, 2015
    3.Searchinger T, Heimlich R, Houghton RA et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238-240. doi:10.-126/?science.-151861 CrossRef PubMed
    4.Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235-238. doi:10.-126/?science.-152747 CrossRef PubMed
    5.Gibbs HK, Johnston M, Foley JA et al (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3:034001. doi:10.-088/-748-9326/-/-/-34001 CrossRef
    6.Gallagher E (2008) The Gallagher review of the indirect effects of biofuels production. Renewable Fuels Agency, Sussex, England
    7.Melillo JM, Reilly JM, Kicklighter DW et al (2009) Indirect emissions from biofuels: how important? Science 326:1397-399. doi:10.-126/?science.-180251 CrossRef PubMed
    8.Ravidranath N, Manuvie R, Fargione J, et al. (2009) Greenhouse gas implications of land use and land conversion to biofuel crops. In: Howarth R, Bringezu S (eds) Biofuels: Environmental consequences and interactions with changing land use. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE), International Biofuels Project Rapid Assessment, 22-5 September 2008, Gummersbach, Germany. Cornell University, Ithaca NY, USA, pp 111-25
    9.Black E (2009) The impact of climate change on daily precipitation statistics in Jordan and Israel. Atmos Sci Lett 10:192-00. doi:10.-002/?asl.-33 CrossRef
    10.Metzger M, Bunce R, Jongman R et al (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549-63CrossRef
    11.Rosenzweig C, Tubiello F (1997) Impacts of global climate change on Mediterranean agriculture: current methodologies and future directions: an introductory essay. Mitig Adapt Strateg Glob Chang 01:219-32. doi:10.-017/?S002081830001344- CrossRef
    12.Rettenmaier N, Schorb A, Hienz G, Diaz-Chavez R (2012) Report on sustainability impacts of the use of marginal areas and grassy biomass (Deliverable 5.4). Global-Bio-Pact project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://?www.?globalbiopact.?eu/?images/?stories/?publications/?d5_-.?pdf . Accessed June 12, 2015
    13.Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509-18. doi:10.-111/?j.-529-8817.-003.-0749.?x CrossRef
    14.Styles D, Jones MB (2008) Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland. Environ Sci Policy 11:294-06. doi:10.-016/?j.?envsci.-008.-1.-04 CrossRef
    15.Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev 13:271-90. doi:10.-016/?j.?rser.-007.-7.-08 CrossRef
    16.Tonini D, Hamelin L, Wenzel H, Astrup T (2012) Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes. Environ Sci Technol 46:13521-3530. doi:10.-021/?es3024435 CrossRef PubMed
    17.van Dam J, Faaij APC, Hilbert J et al (2009) Large-scale bioenergy production from soybeans and switchgrass in Argentina. Part B. Environmental and socio-economic impacts on a regional level. Renew Sustain Energy Rev 13:1679-709. doi:10.-016/?j.?rser.-009.-3.-12 CrossRef
    18.Bai Y, Luo L, Van Der Voet E (2010) Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int J Life Cycle Assess 15:468-77. doi:10.-007/?s11367-010-0177-2 CrossRef
    19.Cherubini F, Jungmeier G (2009) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15:53-6. doi:10.-007/?s11367-009-0124-2 CrossRef
    20.Wang M, Han J, Dunn JB et al (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7:045905. doi:10.-088/-748-9326/-/-/-45905 CrossRef
    21.Bergman RD, Reed DL, Taylor AM et al (2015) Cradle-to-gate life cycle assessment of switchgrass fuel pellets manufactured in the Southeastern United States. Wood Fiber Sci 47:1-3
    22.Kretschmer W, Capaccioli S, Chiaramonti D, et al. (2013) Integrated
  • 作者单位:Tobias Schmidt (1)
    Ana Luisa Fernando (2)
    Andrea Monti (3)
    Nils Rettenmaier (1)

    1. IFEU—Institut für Energie- und Umweltforschung Heidelberg GmbH, Wilckensstra?e 3, 69120, Heidelberg, Germany
    2. MEtRiCS, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
    3. Department of Agricultural Sciences, University of Bologna, Bologna, Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
Agricultural systems in the Mediterranean region are increasingly getting under pressure due to both global warming and the aggravating competition for agricultural land. Perennial grasses have the potential to tackle both challenges: they are drought-resistant crops and considered not to compete for high-productivity agricultural land because they can be grown on marginal land. This paper presents the outcome of a screening life cycle assessment (LCA) conducted as part of an integrated sustainability assessment within the EU-funded project ‘Optimization of Perennial Grasses for Biomass Production-(OPTIMA). The project aims at optimised production of Miscanthus (Miscanthus × giganteus), giant reed (Arundo donax L.), switchgrass (Panicum virgatum L.) and cardoon (Cynara cardunculus L.) on marginal land in the Mediterranean region. Different cultivation and use options were investigated by comparing the entire life cycles of bioenergy and bio-based products to equivalent conventional products. The LCA results show that the cultivation of perennial grasses on marginal land and their use for stationary heat and power generation can achieve substantial greenhouse gas emission and non-renewable energy savings, with Miscanthus allowing for savings ranging up to 13 t CO2 eq./(ha · year) and 230 GJ/(ha · year), respectively. Negative environmental impacts are less pronounced. Significant parameters include irrigation needs and moisture content at harvest, which determines energy demand for technical drying. We conclude that the cultivation of perennial grasses on marginal land in the Mediterranean region provides potentials for climate change mitigation together with comparatively low other environmental impacts, if several boundary conditions and recommendations are met. Keywords Life cycle assessment Environmental impacts Bioenergy Perennial grasses Marginal land Mediterranean region
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.