Transport mechanisms and interface properties of W/p-InP Schottky diode at room temperature
详细信息    查看全文
  • 作者:D. Sri Silpa ; P. Sreehith ; V. Rajagopal Reddy ; V. Janardhanam
  • 关键词:p ; InP ; Schottky contacts ; Electrical properties ; Current conduction mechanisms ; Interface state density
  • 刊名:Indian Journal of Physics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:90
  • 期:4
  • 页码:399-406
  • 全文大小:1,423 KB
  • 参考文献:[1]R T Tung Mater. Sci. Eng. R 35 1 (2001)CrossRef
    [2]D L Lile and D A Collins Appl. Phys. Lett. 37 552 (1980)ADS CrossRef
    [3]R H Williams and G Y Robinson Physics and Chemistry of III–V Compound Semiconductor Interfaces (New York: Pleneum Press) (1985)
    [4]H C Card and E H Rhoderick J. Phys. D Appl. Phys. 4 1589 (1971)ADS CrossRef
    [5]M E Aydin, K Akkilic and T Kilicoglu Phys. B 352 312 (2004)ADS CrossRef
    [6]S N Mohammad J. Appl. Phys. 97 063703(1) (2005)ADS
    [7]A Motayed and S N Mohammad J. Chem. Phys. 123(19) 194703(1) (2005)ADS
    [8]S Chand and S Bala Phys. B 390 179 (2007)ADS CrossRef
    [9]S Asubay, O Gullu and A Turut Appl. Surf. Sci. 254 3558 (2008)ADS CrossRef
    [10]C C Varenne, J Brunet, A Pauly and B Lauron Phys. B 404 1082 (2009)ADS CrossRef
    [11]V Janardhanam et al. J. Alloys Compd. 504 146 (2010)CrossRef
    [12]S Asubay Microelectron. Eng. 88 109 (2011)CrossRef
    [13]D Korucu and S Duman Thin Solid Films 531 436 (2013)ADS CrossRef
    [14]V Rajagopal Reddy, L Dasaradha Rao, V Janardhanam, M-S Kang and C-J Choi Mater. Trans. 54 2173 (2013)CrossRef
    [15]L Dasaradha Rao, V Rajagopal Reddy, V Janardhanam, M-S Kang, B-C Son and C-J Choi Superlattices Microstruct. 65 206 (2014)ADS CrossRef
    [16]A Fiori, T Teraji and Y. Koide Appl. Phys. Lett. 105 13315 (2014)
    [17]R Weiss, L Frey and H Ryssel Appl. Surf. Sci. 184 413 (2001)ADS CrossRef
    [18]S Toumi, A F Hamida, L Boussouar, A Sellai, Z Ouennoughi and H Ryssel Microelectron. Eng. 86 303 (2009)CrossRef
    [19]E H Rhoderick and R H Williams Metal-Semiconductor Contacts, 2nd edn. (Oxford, UK: Clarendon) (1988)
    [20]S M Sze Physics of Semiconductor Devices, 2nd edn. (New York: Wiley) (1981)
    [21]R F Schmitsdorf, T U Kampen and W Monch J. Vac. Sci. Technol. B 15 1221 (1997)CrossRef
    [22]W Monch J. Vac. Sci. Technol. B 17 1867 (1999)CrossRef
    [23]R T Tung Phys. Rev. B 45 13509 (1992)ADS CrossRef
    [24]S K Cheung and N W Cheung Appl. Phys. Lett. 49 85 (1986)ADS CrossRef
    [25]O Gullu and A Turut J. Appl. Phys. 106 103717 (2009)ADS CrossRef
    [26]T Kilicoglu Thin Solid Films 516 967 (2008)ADS CrossRef
    [27]S Aydogan, U Incekara, A R Deniz and A Turut Microelectron. Eng. 87 2525 (2010)CrossRef
    [28]S M El-Sayed, H M A Hamid and R M Radwan Radiat. Phys. Chem. 69 339 (2004)ADS CrossRef
    [29]T T BenJomaa, L Beji, A Ltaeif and A Bouazizi Mater. Sci. Eng. C 26 530 (2006)CrossRef
    [30]G Vincent, A Chantre and D Bois J. Appl. Phys. 50 5484 (1979)ADS CrossRef
    [31]C H Han IEEE Electron Device Lett. 2 74 (1991)ADS CrossRef
    [32]V Rajagopal Reddy, V Janardhanam, J-W Ju, H-J Yun and C-J Choi Solid-State Commun. 79 34 (2014)ADS CrossRef
    [33]V Janardhanam, Y K Park, K S Ahn and C-J Choi J. Alloys Compd. 534 37 (2012)CrossRef
    [34]M Sharma and S K Tripati J. Appl. Phys. 112 024521 (2012)ADS CrossRef
    [35]V Janardhanam et al. Phys. Status Solidi A 206 2658 (2009)ADS CrossRef
    [36]Y P Song, R L Van Meirhaeghe, W H Laflere and F Cardon Solid-State Electron. 29 633 (1986)ADS CrossRef
    [37]V Janardhanam, Y K Park, H J Yun, K S Ahn, and C J Choi IEEE Electron Device Lett. 33 949 (2012)ADS CrossRef
    [38]M Bhatnagar, B Jayant Baliga, H R Kirk and G A Rozgonyi IEEE Trans. Electron Devices 43 150 (1996)ADS CrossRef
    [39]Y Zhou et al. J. Appl. Phys. 101 024506 (2007)ADS CrossRef
    [40]J W Kim and J W Lee Appl. Surf. Sci. 250 247 (2005)ADS CrossRef
    [41]E H Nicollian and A Goetzberger J. Bell Syst. Technol. 46 1055 (1967)CrossRef
    [42]E H Nicollian and J R Brews MOS (metal oxide semiconductor) Physics and Technology (New York: Wiley) (1982)
    [43]J Fernandez, P Godignon, S Berberich, J Rebollo, G Brezeanu and J Millan Solid-State Electron. 39 1359 (1996)ADS CrossRef
    [44]M E Yacoubi, R Evrard, N D Nguyen and M Schmeits Semicond. Sci. Technol. 15 341 (2000)ADS CrossRef
    [45]F F Parlakturk, S Altındal, A Tataroglu, M Parlak and A Agasiev Microelectron. Eng. 85 81 (2008)CrossRef
  • 作者单位:D. Sri Silpa (1)
    P. Sreehith (2)
    V. Rajagopal Reddy (1)
    V. Janardhanam (3)

    1. Department of Physics, Sri Venkateswara University, Tirupati, 517 502, India
    2. Department of Electronics and Communication Engineering, Amrita Viswa Vidyapeetham, Bengaluru, India
    3. School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju, 561-756, Republic of Korea
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Astronomy, Astrophysics and Cosmology
    Physics
  • 出版者:Springer India
  • ISSN:0974-9845
文摘
We have investigated the electrical properties and current transport mechanisms of W/p-InP Schottky diode using current–voltage (I–V), capacitance–voltage–frequency (C–V–f) and conductance–frequency (G–f) techniques at room temperature. The W/p-InP Schottky diode exhibits a good rectifying behavior. Measurements show that the Schottky barrier height (SBH) and ideality factor of the W/p-InP Schottky diode are 0.84 eV (I–V)/0.98 eV (C–V) and 1.24, respectively. Also, the SBH and series resistance R s of the diode are extracted by Cheung’s functions and the values are in good agreement with each other. Ohmic and space charge-limited conduction mechanisms are found to govern the current flow in the W/p-InP Schottky diode at low and high forward bias conditions, respectively. Experimental results reveal that the Poole–Frenkel mechanism is found to be dominant in the reverse bias region of W/p-InP Schottky diode. Further, the interface state density N ss and their relaxation times τ of the W/p-InP Schottky diode are estimated from the forward bias C–f and G–f characteristics and the values are in the range from 1.95 × 1013 eV−1 cm−2 and 3.38 × 10−5 s at (0.81-E V ) eV to 1.78 × 1013 eV−1 cm−2 and 2.78 × 10−6 s at (0.30-E V ) eV, respectively. Both the N ss and τ show an exponential rise with bias from the top of the valance band toward the mid gap.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.