Frequent activation of EGFR in advanced chordomas
详细信息    查看全文
  • 作者:Barbara Dewaele (1)
    Francesca Maggiani (2)
    Giuseppe Floris (3)
    Michèle Ampe (4) (5)
    Vanessa Vanspauwen (1)
    Agnieszka Wozniak (3)
    Maria Debiec-Rychter (1)
    Raf Sciot (2)
  • 刊名:Clinical Sarcoma Research
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:1
  • 期:1
  • 全文大小:2979KB
  • 参考文献:1. Stacchiotti S, Casali PG, Lo VS, Mariani L, Palassini E, Mercuri M, Alberghini M, Pilotti S, Zanella L, Gronchi A, Picci P: Chordoma of the mobile spine and sacrum: a retrospective analysis of a series of patients surgically treated at two referral centers. / Ann Surg Oncol 2010, 17:211-19. CrossRef
    2. Ferraresi V, Nuzzo C, Zoccali C, Marandino F, Vidiri A, Salducca N, Zeuli M, Giannarelli D, Cognetti F, Biagini R: Chordoma: clinical characteristics, management and prognosis of a case series of 25 patients. / BMC Cancer 2010, 10:22. CrossRef
    3. Mirra JM, Nelson SD, Della Rocca C, Mertens F: Chordoma. In / World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. / Volume 5. 1st edition. Edited by: Fletcher CD, Unni KK, Mertens F. Lyon: IARC Press; 2002:315-17.
    4. Scheil S, Bruderlein S, Liehr T, Starke H, Herms J, Schulte M, M?ller P: Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. / Genes Chromosomes Cancer 2001, 32:203-11. CrossRef
    5. Tallini G, Dorfman H, Brys P, Dal Cin P, De Wever I, Fletcher CD, Jonson K, Mandahl N, Mertens F, Mitelman F, Rosai J, Rydholm A, Samson I, Sciot R, Van den Berghe H, Vanni R, Willén H: Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours. A report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. / J Pathol 2002, 196:194-03. CrossRef
    6. Miozzo M, Dalpra L, Riva P, Volontà M, Macciardi F, Pericotti S, Tibiletti MG, Cerati M, Rohde K, Larizza L, Fuhrman Conti AM: A tumor suppressor locus in familial and sporadic chordoma maps to 1p36. / Int J Cancer 2000, 87:68-2. CrossRef
    7. Hallor KH, Staaf J, J?nsson G, Heidenblad M, Vult von Steyern F, Bauer HC, Ijszenga M, Hogendoorn PC, Mandahl N, Szuhai K, Mertens F: Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation. / Br J Cancer 2008, 98:434-42. CrossRef
    8. Tamborini E, Virdis E, Negri T, Orsenigo M, Brich S, Conca E, Gronchi A, Stacchiotti S, Manenti G, Casali PG, Pierotti MA, Pilotti S: Analysis of receptor tyrosine kinases (RTKs) and downstream pathways in chordoma. / Neuro Oncol 2010, 12:776-9. CrossRef
    9. Hof H, Welzel T, Debus J: Effectiveness of cetuximab/gefitinib in the therapy of a sacral chordoma. / Onkologie 2006, 29:572-74. CrossRef
    10. Naka T, Iwamoto Y, Shinohara N, Ushijima M, Chuman H, Tsuneyoshi M: Expression of c-met proto-oncogene product (c-MET) in benign and malignant bone tumors. / Mod Pathol 1997, 10:832-38.
    11. Tamborini E, Miselli F, Negri T, Lagonigro MS, Staurengo S, Dagrada GP, Stacchiotti S, Pastore E, Gronchi A, Perrone F, Carbone A, Pierotti MA, Casali PG, Pilotti S: Molecular and biochemical analyses of platelet-derived growth factor receptor (PDGFR) B, PDGFRA, and KIT receptors in chordomas. / Clin Cancer Res 2006, 12:6920-928. CrossRef
    12. Weinberger PM, Yu Z, Kowalski D Joe J, Manger P, Psyrri A, Sasaki CT: Differential expression of epidermal growth factor receptor, c-Met, and HER2/neu in chordoma compared with 17 other malignancies. / Arch Otolaryngol Head Neck Surg 2005, 131:707-11. CrossRef
    13. Casali PG, Messina A, Stacchiotti S, Tamborini E, Crippa F, Gronchi A, Orlandi R, Ripamonti C, Spreafico C, Bertieri R, Bertulli R, Colecchia M, Fumagalli E, Greco A, Grosso F, Olmi P, Pierotti MA, Pilotti S: Imatinib mesylate in chordoma. / Cancer 2004, 101:2086-097. CrossRef
    14. Deniz ML, Kilic T, Almaata I, Kurtkaya O, Sav A, Pamir MN: Expression of growth factors and structural proteins in chordomas: basic fibroblast growth factor, transforming growth factor alpha, and fibronectin are correlated with recurrence. / Neurosurgery 2002, 51:753-60.
    15. Fasig JH, Dupont WD, LaFleur BJ, Olson SJ, Cates JM: Immunohistochemical analysis of receptor tyrosine kinase signal transduction activity in chordoma. / Neuropathol Appl Neurobiol 2008, 34:95-04.
    16. Shalaby A, Presneau N, Ye H, Halai D, Berisha F, Idowu B, Leithner A, Liegl B, Briggs TRW, Bacsi K, Kindblom LG, Athanasou N, Amary MF, Hogendoorn PCW, Tirabosco R, Flanagan AM: The role of epidermal growth factor receptor in chordoma pathogenesis: a potential therapeutic target. / J Pathol 2011, 223:336-46. CrossRef
    17. Brand-Saberi B, Christ B: Evolution and development of distinct cell lineages derived from somites. / Curr Top Dev Biol 2000, 48:1-2. CrossRef
    18. Ostroumov E, Hunter CJ: Identifying mechanisms for therapeutic intervention in chordoma: c-Met oncoprotein. / Spine (Phila Pa 1976) 2008, 33:2774-780. CrossRef
    19. Wozniak A, Sciot R, Guillou L, Pauwels P, Wasag B, Stul M, Vermeesch JR, Vandenberghe P, Limon J, Debiec-Rychter M: Array CGH analysis in primary gastrointestinal stromal tumors: cytogenetic profile correlates with anatomic site and tumor aggressiveness, irrespective of mutational status. / Genes Chromosomes Cancer 2007, 46:261-76. CrossRef
    20. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F, Mentens N, Beverloo HB, Pieters R, Speleman F, Odero MD, Bauters M, Froyen G, Marynen P, Vandenberghe P, Wlodarska I, Meijerink JP, Cools J: Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. / Nat Genet 2007, 39:593-95. CrossRef
    21. VU Micro-Array Data Analysis [http://www.few.vu.nl/~vumarray/]
    22. Debiec-Rychter M, Wasag B, Stul M, De Wever I, Van Oosterom A, Hagemeijer A, Sciot R: Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. / J Pathol 2004, 202:430-38. CrossRef
    23. Primer3: WWW primer tool [http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www_slow.cgi]
    24. Chu T, Weir B, Wolfinger R: A systematic statistical linear modeling approach to oligonucleotide array experiments. / Mathematical Biosciences 2002, 176:35-1. CrossRef
    25. Wolfinger R, Gibson G, Wolfinger E, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules R: Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models. / Journal of Computational Biology 2002, 8:625-37. CrossRef
    26. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. / Journal of the RSS: Series B (Statistical Methodology) 2010, 57:289-00.
    27. Brandal P, Bjerkehagen B, Danielsen H, Heim S: Chromosome 7 abnormalities are common in chordomas. / Cancer Genet Cytogenet 2005, 160:15-1. CrossRef
    28. Kuzniacka A, Mertens F, Strombeck B, Wiegant J, Mandahl N: Combined binary ratio labeling fluorescence in situ hybridization analysis of chordoma. / Cancer Genet Cytogenet 2004, 151:178-81. CrossRef
    29. Sawyer JR, Husain M, Al-Mefty O: Identification of isochromosome 1q as a recurring chromosome aberration in skull base chordomas: a new marker for aggressive tumors? / Neurosurg Focus 2001, 10:E6. CrossRef
    30. Li J, Rix U, Fang B, Bai Y, Edwards A, Colinge J, Bennett KL, Gao J, Song L, Eschrich S, Superti-Furga G, Koomen J, Haura EB: A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. / Nat Chem Biol 2010, 6:291-99. CrossRef
    31. Olson LE, Soriano P: Increased PDGFRalpha activation disrupts connective tissue development and drives systemic fibrosis. / Dev Cell 2009, 16:303-13. CrossRef
    32. Naka T, Boltze C, Kuester D, Schulz TO, Schneider-Stock R, Kellner A, Samii A, Herold C, Ostertag H, Roessner A: Alterations of G1-S checkpoint in chordoma: the prognostic impact of p53 overexpression. / Cancer 2005, 104:1255-263. CrossRef
    33. Genander M, Halford MM, Xu NJ, Eriksson M, Yu Z, Qiu Z, Martling A, Greicius G, Thakar S, Catchpole T, Chumley MJ, Zdunek S, Wang C, Holm T, Goff SP, Pettersson S, Pestell RG, Henkemeyer M, Frisén J: Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. / Cell 2009, 139:679-92. CrossRef
    34. Wagh PK, Peace BE, Waltz SE: Met-related receptor tyrosine kinase Ron in tumor growth and metastasis. / Adv Cancer Res 2008, 100:1-3. CrossRef
    35. Eder JP, Shapiro GI, Appleman L, Zhu AX, Miles D, Keer H, Cancilla B, Chu F, Hitchcock-Bryan S, Sherman L, McCallum S, Heath EI, Boerner SA, LoRusso PM: A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. / Clin Cancer Res 2010, 16:3507-516. CrossRef
    36. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, Chin L, DePinho RA: Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. / Science 2007, 318:287-90. CrossRef
    37. Zhou Y, Li S, Hu YP, Wang J, Hauser J, Conway AN, Vinci MA, Humphrey L, Zborowska E, Willson JK, Brattain MG: Blockade of EGFR and ErbB2 by the novel dual EGFR and ErbB2 tyrosine kinase inhibitor GW572016 sensitizes human colon carcinoma GEO cells to apoptosis. / Cancer Res 2006, 66:404-11. CrossRef
    38. Dewaele BM, Floris G, Finalet-Ferreiro J, Fletcher CD, Coindre JM, Guillou L, Hogendoorn PC, Wozniak A, Vanspauwen V, Sch?ffski P, Marynen P, Vandenberghe P, Sciot R, Debiec-Rychter M: Co-activated PDGFRA and EGFR are potential therapeutic targets in intimal sarcoma. / Cancer Res 2010, 70:7304-4. CrossRef
    39. Atkins D, Reiffen KA, Tegtmeier CL, Winther H, Bonato MS, Storkel S: Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues: variation in staining intensity due to choice of fixative and storage time of tissue sections. / J Histochem Cytochem 2004, 52:893-01. CrossRef
    40. Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, Hamilton A, Pan D, Schrag D, Schwartz L, Klimstra DS, Fridman D, Kelsen DP, Saltz LB: Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. / J Clin Oncol 2005, 23:1803-810. CrossRef
    41. Moroni M, Veronese S, Benvenuti S, Marrapese G, Sartore-Bianchi A, Di Nicolantonio F, Gambacorta M, Siena S, Bardelli A: Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. / Lancet Oncol 2005, 6:279-86. CrossRef
    42. Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, Diss T, Tirabosco R, Flanagan AM: Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway. / Br J Cancer 2009, 100:1406-414. CrossRef
    43. Schwab J, Antonescu C, Boland P, Healey J, Rosenberg A, Nielsen P, Iafrate J, Delaney T, Yoon S, Choy E, Harmon D, Raskin K, Yang C, Mankin H, Springfield D, Hornicek F, Duan Z: Combination of PI3K/mTOR inhibition demonstrates efficacy in human chordoma. / Anticancer Res 2009, 29:1867-871.
    44. Dobashi Y, Suzuki S, Sato E, Hamada Y, Yanagawa T, Ooi A: EGFR-dependent and independent activation of Akt/mTOR cascade in bone and soft tissue tumors. / Mod Pathol 2009, 22:1328-340. CrossRef
    45. Chiacchiera F, Simone C: Signal-dependent regulation of gene expression as a target for cancer treatment: inhibiting p38alpha in colorectal tumors. / Cancer Lett 2008, 265:16-6. CrossRef
    46. Han S, Polizzano C, Nielsen GP, Hornicek FJ, Rosenberg AE, Ramesh V: Aberrant hyperactivation of akt and Mammalian target of rapamycin complex 1 signaling in sporadic chordomas. / Clin Cancer Res 2009, 15:1940-946. CrossRef
    47. Xu AM, Huang PH: Receptor tyrosine kinase coactivation networks in cancer. / Cancer Res 2010, 70:3857-860. CrossRef
  • 作者单位:Barbara Dewaele (1)
    Francesca Maggiani (2)
    Giuseppe Floris (3)
    Michèle Ampe (4) (5)
    Vanessa Vanspauwen (1)
    Agnieszka Wozniak (3)
    Maria Debiec-Rychter (1)
    Raf Sciot (2)

    1. Department of Human Genetics, Catholic University of Leuven, University Hospitals, Leuven, Belgium
    2. Department of Pathology, Catholic University of Leuven, University Hospitals, Leuven, Belgium
    3. Laboratory of Experimental Oncology, Department of General Medical Oncology, Catholic University of Leuven, University Hospitals, Leuven, Belgium
    4. I-BioStat, Catholic University of Leuven, Leuven, Belgium
    5. Hasselt University, Hasselt, Belgium
  • ISSN:2045-3329
文摘
Background Chordomas are rare neoplasms, arising from notochordal remnants in the midline skeletal axis, for which the current treatment is limited to surgery and radiotherapy. Recent reports suggest that receptor tyrosine kinases (RTK) might be essential for the survival or proliferation of chordoma cells, providing a rationale for RTK targeted therapy. Nevertheless, the reported data are conflicting, most likely due to the assorted tumor specimens used for the studies and the heterogeneous methodological approaches. In the present study, we performed a comprehensive characterization of this rare entity using a wide range of assays in search for relevant therapeutic targets. Methods Histopathological features of 42 chordoma specimens, 21 primary and 21 advanced, were assessed by immunohistochemistry and fluorescent in situ hybridization (FISH) using PDGFRB, CSF1R, and EGFR probes. Twenty-two of these cases, for which frozen material was available (nine primary and 13 advanced tumors), were selectively analyzed using the whole-genome 4.3 K TK-CGH-array, phospho-kinase antibody array or Western immunoblotting. The study was supplemented by direct sequencing of KIT, PDGFRB, CSF1R and EGFR. Results We demonstrated that EGFR is frequently and the most significantly activated RTK in chordomas. Furthermore, concurrent to EGFR activation, the tumors commonly reveal co-activation of alternative RTK. The consistent activation of AKT, the frequent loss of the tumor suppressor PTEN allele, the recurrent activation of upstream RTK and of downstream effectors like p70S6K and mTOR, all indicate the PI3K/AKT pathway as an important mediator of transformation in chordomas. Conclusions Given the complexity of the signaling in chordomas, combined treatment regimens targeting multiple RTK and downstream effectors are likely to be the most effective in these tumors. Personalized therapy with careful selection of the patients, based on the molecular profile of the specific tumor, is anticipated.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.