The first principles investigation of ferrite magnetic response with mismatch stress
详细信息    查看全文
  • 作者:JunPing Huang (1) (3)
    XiangHe Peng (1)
    XianZhi Hu (2)
  • 关键词:the first ; principles calculation ; SDFT ; quasi ; ferrite ; lattice mismatch ; residual stress
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:57
  • 期:3
  • 页码:512-520
  • 全文大小:919 KB
  • 参考文献:1. Doubov A A. Screening of weld quality using the metal magnetic memory effect. Weld World, 1998, 41(3): 196-99
    2. Doubov A A. Study of metal properties using metal magnetic memory method. In: Proceedings of 7th European Conference on Non-destructive Testing. Copenhagen: NDTnet, 1998. 920-27
    3. Doubov A A. A technique for monitoring the bends of boiler and steam-line tubes using the magnetic memory of metal. Therm Eng, 2001, 48(4): 289-95
    4. Linnemann K, Klinkel S, Wagner W. A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct, 2009, 46: 1149-166 CrossRef
    5. Wan Y P, Fang D N, Hwang K C. Non-linear constitutive relations for magnetostrictive materials. Int J Nonlin Mech, 2003, 38: 1053-065 CrossRef
    6. Zhou H M, Zhou Y H, Zheng X J, et al. A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials. J Magn Magn Mater, 2009, 321: 281-90 CrossRef
    7. Barth U V, Hedin L. A local exchange-correlation potential for the spin polarized case. J Phys C-Solid State Phys, 1972, 5: 1629-642 CrossRef
    8. Pant M M, Rajagopal A K. Theory of inhomogeneous magnetic electron gas. Solid State Commun, 1972, 10: 1157-160 CrossRef
    9. Levy M. Electron densities in search of Hamiltonians. Phys Rev A, 1982, 26(3): 1200-208 CrossRef
    10. Becke A D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A, 1988, 38: 3098-100 CrossRef
    11. Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Chem B, 1992, 46: 6671-687
    12. Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Chem B, 1996, 54: 16533-6539
    13. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865-868 CrossRef
    14. Baskes M I. Many-body effects in / fcc metals: A Lennard-Jones embedded-atom potential. Phys Rev Lett, 1999, 83(13): 2592-595 CrossRef
    15. Komanduri R, Chandrasekaran N, Raff L M. Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel. Int J Mech Sci, 2001, 43: 2237-360 CrossRef
    16. Rocker W, Kohlhaas R, Sch?pgens H W. Magneto caloric effect and critical phenomena of iron, cobalt and nickel near the Curie temperature. J Phys, 1971, 32: 652-53
    17. Hadj-Larbi A, Bouarab S. Magnetic profile and interlayer exchange coupling in / fcc Fen/Nim (001) superlattices. Phys Rev B, 2002, 66: 144428-44435 CrossRef
    18. Hadj-Larbi A, Adjaoud O, Bouarab S, et al. Magnetic map and interlayer exchange coupling in Fe/Ni (110) and Fe/Ni (111) superlattices. Surf Sci, 2005, 594: 148-55 CrossRef
    19. Hadj-Larbi A, Ziane A, Bouarab S, et al. Effect on alloying at the Fe/Ni (001) interfaces on the interlayer exchange coupling. Eur Phys J B, 2006, 53: 29-4 CrossRef
    20. Hong J S. Thickness-dependent magnetic anisotropy in ultrathin Fe/Co/Cu (001) films. Phys Rev B, 2006, 74: 172408-72411 CrossRef
    21. Ziane A, Amitouche F, Hadj-Larbi A, et al. Relation between interlayer exchange coupling and nonferromagnetic behavior of Fe in Ni/Fe/Co superlattices. Phys Rev B, 2006, 73: 064411-64417 CrossRef
    22. Le B O, Eriksson O, Johansson B. First-principles calculations of the magnetic anisotropy energy of Fe-V multilayers. Phys Rev B, 2002, 65: 134430-34438 CrossRef
    23. Le B O, Pasturel A. First-principles determination of exchange interactions in delafossite YCuO2.5. Phys Rev B, 2005, 71: 014432-14439 CrossRef
  • 作者单位:JunPing Huang (1) (3)
    XiangHe Peng (1)
    XianZhi Hu (2)

    1. Department of Engineering Mechanics, Chongqing University, Chongqing, 400044, China
    3. School of Mechanical Engineering, Chongqing Vocational Institute of Engineering, Chongqing, 400037, China
    2. Faculty of Science, Kunming University of Science and Technology, Kunming, 650093, China
  • ISSN:1869-1927
文摘
The quasi-ferrite model is proposed and an appropriate PBE exchange functional with the spin density functional theory (SDFT) is selected for the calculation of the relation between magnetic moment and residual stress in ferrite using a quantum mechanics code. The relationship between ferrite magnetism and the carbon content is determined, and then a ferrite interstitial solid solution (ISS) model in a low carbon concentration state is replaced with an α-Fe model in the case of majority magnetic calculation. The band structure of the loaded α-Fe is compared with that of the unloaded α-Fe. The comparison shows that the energy of Fe atomic 3d orbital changes a little, while the energy of electron orbital of iron core below 3d almost keeps unchanged. The relationship between the magnetic moment and the stress appears intermittent due to the Bragg total reflection. The change in the magnetic moment due to lattice mismatch is much larger than that caused by mechanical loading.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.