Assessing Potential Earthquake Loss in Mérida State, Venezuela Using Hazus
详细信息    查看全文
  • 作者:América Bendito ; Jesse Rozelle…
  • 关键词:Disaster loss estimation ; Earthquake damage Hazus ; Seismic risk ; Venezuela
  • 刊名:International Journal of Disaster Risk Science
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:5
  • 期:3
  • 页码:176-191
  • 全文大小:18,805 KB
  • 参考文献:1. Allen, T.I., and D.J. Wald. 2009. Evaluation of ground-motion modeling techniques for use in Global ShakeMap: A critique of instrumental ground-motion prediction equations, peak ground motion to macroseismic intensity conversions, and macroseismic intensity predictions in different tectonic settings. U.S. Geological Survey Open-File Report 2009-1047 114. Golden, CO: USGS.
    2. Bendito, A. 2001. Analysis of seismicity and isoaceleration curves for structural performance levels in western Venezuela ( / Análisis de sismicidad y curvas de isoaceleración para estados de desempe?o estructural en el Occidente venezolano). Master’s thesis in Structural Engineering, Faculty of Engineering, Universidad de Los Andes, Mérida, Venezuela (in Spanish).
    3. Bendito, A., P. Rivero, and W. Lobo-Quintero. 2001. Isoacceleration curves for structural performance levels in western Venezuela ( / Curvas de Isoaceleración para Estados de Desempe?o Estructural en el Occidente de Venezuela) vol. 39, no. 2: 1-8. Caracas, Venezuela: Boletín Técnico del Instituto de Materiales y Modelos Estructurales (IMME) (in Spanish).
    4. Boore, D.M., W.B. Joyner, and T.E. Fumal. 1993. Estimation of response and peak accelerations from western North American earthquakes. U.S. Geological Survey. Open File Report 93-509. EZ-FRISK?Attenuation Equation References. Merlo Park, CA: USGS.
    5. Buika, J.A. 2000. A public–private partnership to develop the HAZUS earthquake risk assessment capabilities for the San Francisco Bay Area, California. A paper report in the Federal Emergency Management Agency (FEMA), Mitigation Division. San Francisco, CA: FEMA.
    6. Campbell, K.W. 1993. Empirical prediction?of near source ground motion from large earthquakes.? / Proceedings, international workshop on / earthquake hazard and / large dams in the Himalaya, sponsored by the Indian National Trust for Art and Cultural Heritage (INTACH), January 15-6, 1993, in New Delhi, India.
    7. Castillo, A. 2006. Seismic risk scenarios for buildings in Mérida, Venezuela. Detailed vulnerability assessment for non-engineered housing. Doctoral diss., Technical University of Catalonia, Barcelona.
    8. Castillo, A., F. López-Almansa, and L.G. Pujares. 2008. Seismic risk reduction measures of a vulnerable urban informal settlement in Mérida, Venezuela. Cost-benefit analysis. The 14th world conference on earthquake engineering, Beijing, China.
    9. Chock, G., I. Robertson, P. Nicholson, H. Brandes, E. Medley, P. Okubo, T. Kindred, G. Iinuma, E. Lau, A. Sarwar, J.D. Pino, and W. Holmes. 2006. Compilation of observations of the October 15, 2006 Kiholo Bay (Mw 6.7) and Mahukona (Mw 6.0) Earthquakes, Hawaii. Report for the Earthquake Engineering Research Institute and the Structural Engineers Association of Hawaii, Hawaii.
    10. Chiou, B., and R. Young. 2006. PEER-NGA empirical ground motion model for the average horizontal component of peak acceleration and psuedo-spectral acceleration for spectral periods of 0.01 to 10 seconds. Pacific Earthquake Engineering interim report for USGS review.
    11. Coronel, G., and O.A. López. 2013. Methodology for estimating earthquake injuries in school buildings in Venezuela by fragility curves ( / Metodología para la Estimación de Da?os Por Sismos en Edificios Escolares de Venezuela Mediante Curvas de Fragilidad). / Revista de la Facultad de Ingeniería- / UCV 28(2) (in Spanish).
    12. COVENIN (Comisión Venezolana de Normas Industriales). 1998. COVENIN 1756:1998, Venezuelan seismic design codes for buildings (COVENIN 1756:1998, / Edificaciones sismorresistentes). Caracas, Venezuela: Fundación Venezolana de Investigaciones Sismológicas (FUNVISIS) (in Spanish).
    13. COVENIN (Comisión Venezolana de Normas Industriales). 2001. COVENIN 1756:2001, Venezuelan seismic design codes for buildings. Requirements (COVENIN 1756:2001, / Edificaciones sismorresistentes. Requisitos). Caracas, Venezuela: Fondonorma (in Spanish).
    14. Crouse, C.B. 1991. Ground-motion attenuation equations for earthquakes on the Cascadia subduction zone. / Earthquake Spectra 7(2): 201-36. CrossRef
    15. D’Ayala, D. 2011. Unreinforced brick masonry construction. University of Bath, United Kingdom. http://www.world-housing.net/wp-content/uploads/2011/08/Type_Brick.pdf. Accessed 30 Aug 2014.
    16. EERI (Earthquake Engineering Research Institute). 2010. Special earthquake report. Learning from earthquakes. The Mw 7.0 Haiti Earthquake of January 12, 2010: Report #2. EERI.
    17. EERI (Earthquake Engineering Research Institute) and IAEE (International Association for Earthquake Engineering). n.d. World Housing Encyclopedia. http://www.world-housing.net. Accessed 17 June 2010.
    18. Ferrer, C., and J. Laffaille. 2002a. Evaluation of the physical conditions and vulnerability analysis as a basis to establish susceptibility levels of Los Pepos, Santa Cruz de Mora, Mérida ( / Evaluación de las condiciones físicas y análisis de la vulnerabilidad como base al establecimiento de niveles de susceptibilidad del sector Los Pepos, Santa Cruz de Mora, Mérida). Technical report. Mérida, Venezuela: Fundación para la Prevención de los Riesgos Sísmicos del estado Mérida (FUNDAPRIS) (in Spanish).
    19. Ferrer, C., and J. Laffaille. 2002b. Evaluation of the physical conditions and vulnerability analysis as a basis to establish susceptibility levels of La Vega Hospital, Libertador Municipality, Mérida ( / Evaluación de las condiciones físicas y análisis de la vulnerabilidad como base al establecimiento de niveles de susceptibilidad del sector La Vega del Hospital, municipio Libertador, Mérida). Technical report. Mérida, Venezuela: Fundación para la Prevención de los Riesgos Sísmicos (FUNDAPRIS) (in Spanish).
    20. Ferrer, C., and J. Laffaille. 2002c. Analysis of physical and vulnerability conditions for rehabilitation of San Jose of the Flores neighborhood ( / Análisis de las condiciones físicas y vulnerabilidad con fines de rehabilitación del barrio San José de las Flores). Technical report. Mérida, Venezuela: Fundación para la Prevención de los Riesgos Sísmicos del estado Mérida (FUNDAPRIS) (in Spanish).
    21. Ferrer, C., and J. Laffaille. 2002d. A microzonification test for enabling neighborhoods in the Venezuelan Andes. III Symposium on seismic microzonation: Path to reduced vulnerability ( / Un ensayo de microzonificación para la habilitación de barrios en los Andes venezolanos. III Coloquio sobre Microzonificación Sísmica: camino hacia una menor vulnerabilidad). Technical series No. 1-2002, 37-9. Mérida, Venezuela: Fundación Venezolana de Investigaciones Sismológicas (FUNVISIS) (in Spanish).
    22. GSHAP (Global Seismic Hazard Assessment Program). 1999. http://www.seismo.ethz.ch/static/GSHAP/. Accessed 30 Aug 2014.
    23. Gulati, B. 2006. Earthquake risk assessment of buildings: Applicability of HAZUS in Dehradun, India. Published master’s thesis in International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands.
    24. Hansen, R., D. Bausch, J. Rozelle, and S. McNabb. 2010. An updated GIS-based methodology for exporting the Hazus earthquake model for global applications: HAZ EM (extended Mediterranean) loss estimation. http://www.unesco.org/science/doc/earthquake/RELEMR2010_Short_Description_Agenda.pdf.
    25. Idriss, I.M. 1993. Procedures for selecting earthquakes ground motion at rock sites. National Institute of Standards and Technology, NIST GCR 93-625.
    26. INE (National Institute of Statistics ( / Instituto Nacional de Estadística)), República Bolivariana de Venezuela. 2011. http://www.ine.gob.ve. Accessed 26 Mar 2012 (in Spanish).
    27. Jaiswal, K., and D.J. Wald. 2008. Creating a global residential building inventory for earthquake loss assessment and risk management. U.S.G.S. Open File Report, OF 2008-1160. http://pubs.usgs.gov/of/2008/1160/.
    28. Kircher, C.A. 2003. Near-real-time loss estimation using HAZUS and ShakeMap. / Proceedings of SMIP03 seminar on utilization of strong- / motion data, 59-6. Oakland, CA, 22 May 2003.
    29. Kircher, C.A., H.A. Seligson, J. Bouabid, and G.C. Morrow. 2006a. When the big one strikes again—Estimated losses due to a repeat of the 1906 San Francisco Earthquake. / Earthquake Spectra 22(S2): S297–S339. CrossRef
    30. Kircher, C.A., R.V. Whitman, and W.T. Holmes. 2006b. HAZUS earthquake loss estimation methods. / Natural Hazards Review 7(2): 45-9. CrossRef
    31. Korkmaz, K.A. 2009. Earthquake disaster risk assessment and evaluation for Turkey. / Environmental Geology 57(2): 307-20. CrossRef
    32. Laffaille, J., F. Audemard, and M. Alvarado. 2010. San Antonio de Mucu?o, Mérida Andes, Venezuela: Relocation of a doctrine town following the 1674 earthquake. The Geological Society of America Special Paper 471.
    33. Levi, T., D. Bausch, O. Katz, J. Rozelle, and A. Salamon. 2014. Insights from Hazus loss estimations in Israel for Dead Sea Transform earthquakes. / Natural Hazards. doi:10.1007/s11069-014-1325-y .
    34. Lira, L. 2008. Estimating a scenario earthquake damage in Domingo Pe?a Parish, Libertador Municipality of the City of Mérida ( / Estimación de un Escenario de Da?os por Terremotos en la Parroquia Domingo Pe?a, Municipio Libertador de la Ciudad de Mérida). Degree work submitted as partial requirement for obtaining a civil engineering degree from the Faculty of Engineering, Universidad de Los Andes, Mérida, Venezuela (in Spanish).
    35. Montilla, P., and A. Castillo. 2011. Seismic vulnerability of population centers. Case study: Pan de Azúcar neighborhood, Mérida, estado Mérida, Venezuela. / Revista Geográfica Venezuela 10 (October).
    36. NIBS (National Institute of Building Science). 2012. / HAZUS / MH / technical manual. Washington, DC: Federal Emergency Management Agency (FEMA).
    37. Nastev, M. 2013. / Adapting Hazus for seismic risk assessment in Canada. Québec, Canada: Geological Survey of Canada, Natural Resources Canada.
    38. ORNL (Oak Ridge National Laboratory). 2008. LandScan Documentation. http://web.ornl.gov/sci/landscan/landscan_documentation.shtml. Accessed 30 Mar 2011.
    39. Ove Arup & Partners. 2010. / Haiti earthquake response. Oxfam GB. Arup Assignment Report, Job number 212323-00. London: Ove Arup & Partners Ltd.
    40. Ploeger, S.K., G.M. Atkinson, and C. Samson. 2010. Applying the HAZUS-MH software tool to assess seismic risk in downtown Ottawa, Canada. / Natural Hazards 53(1): 1-0. CrossRef
    41. Rein, A., and R.B. Corotis. 2013. An overview approach to seismic awareness for a “quiescent-region. / Natural Hazards 67(2): 335-63. CrossRef
    42. Remo, J.W.F., and N. Pinter. 2012. Hazus-MH earthquake modeling in the central USA. / Natural Hazards 63(2): 1055-081. CrossRef
    43. Risk Engineering. 1999. / EZ-FRISK version 5.x. Computer package for seismic hazard analysis, spectral matching, and site response analysis. Boulder, CO: Risk Engineering.
    44. Rod, E. 1956. Earthquakes of Venezuela related to strike slip faults? / American Association of Petroleum Geologists Bulletin 40: 2509-512.
    45. Sadigh, K., C. Chang, and N. Abrahamson. 1993. Specification of long-period ground motion. Updated attenuation relationships for rock site conditions and adjustment factors for near-fault effects. / Proceedings of seminar on seismic isolation, passive energy, dissipation, and active control, vol. 1, 59-0. Applied Technology Council ATC-M-1.
    46. SEAOC (Structural Engineers Association of California) Vision 2000 Committee. 1995. Performance-based seismic engineering. Report prepared by Structural Engineers Association of California. Sacramento, CA.
    47. Suárez, L., and N. Dávila. 2006. Qualitative estimation of the seismic vulnerability of school buildings in the city of Mérida ( / Estimación Cualitativa de la Vulnerabilidad Sísmica de Edificaciones Escolares en la Ciudad de Mérida). Degree work submitted as partial requirement for obtaining civil engineering degree from the Faculty of Engineering, Universidad de Los Andes, Mérida, Venezuela (in Spanish).
    48. Tantala, M., G. Nordenson, G. Deodatis, and K. Jacob. 2008. Earthquake loss estimation for the New York City Metropolitan Region. / Soil Dynamics and Earthquake Engineering 28(10-1): 812-35. CrossRef
    49. USGS (U.S. Geological Survey). 2009. Shakemap usVenezuela_se. http://earthquake.usgs.gov/earthquakes/shakemap/global/shake/Venezuela_se/. Accessed 7 Feb 2010.
    50. USGS (U.S. Geological Survey). 2010. Predefined Vs30 Mapping. http://earthquake.usgs.gov/hazards/apps/vs30/predefined.php. Accessed 27 Aug 2009.
    51. Wald, D.J., V. Quitoriano, T.H. Heaton, and H. Kanamori. 1999. Relationship between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. / Earthquake Spectra 15(3): 557-64. CrossRef
    52. Wald, D.J., C.B. Worden, V. Quitoriano, and K.L. Pankow. 2006. ShakeMap? manual, technical manual, users guide, and software guide. http://pubs.usgs.gov/tm/2005/12A01/pdf/508TM12-A1.pdf. Accessed 19 June 2006.
    53. Wong, I. 2010. Development of urban earthquake hazard maps in the United States. China/USA symposium for the advancement of earthquake sciences and hazard mitigation practices, October 19, 2010, in Beijing, China.
  • 作者单位:América Bendito (1)
    Jesse Rozelle (2)
    Douglas Bausch (2)

    1. Civil Engineering Department, Universidad de Los Andes, Mérida, 5101, Venezuela
    2. Mitigation Division, Federal Emergency Management Agency (FEMA), Region VIII, Denver, CO, 80225, USA
  • ISSN:2192-6395
文摘
The focus of the Hazus earthquake model has been largely U.S. centric due to a lack of standardized building-infrastructure data formats applicable elsewhere. In a combined effort between FEMA Region VIII and the Universidad de Los Andes, Venezuela, the present study uses the Hazus 2.1 software to simulate earthquake loss estimations for Venezuela. Population totals and demographic distributions were developed using Oak Ridge National Labs Landscan 2008 population data and the census 2011 for Venezuela. The accuracy of the model was further enhanced for Mérida State, located in western Venezuela, by collecting, incorporating, and developing region and specific inventories including soil maps, liquefaction and landslide susceptibility studies, demographic data, and building inventory information. We used USGS ShakeMaps scenarios for two potential earthquake events with peak ground accelerations proposed within Performance Based Seismic Engineering of Buildings, VISION 2000 recommendations. The region has not witnessed an earthquake with a magnitude greater than M 7 in the last 120?years. Given the historical record of seismicity and the seismotectonics in the region, it becomes increasingly important to understand the potential implications from moderate to large earthquakes in Mérida State, Venezuela.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.