Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea siderea
详细信息    查看全文
  • 作者:J. P. Carricart-Ganivet (1)
    L. F. Vásquez-Bedoya (1) (2)
    N. Cabanillas-Terán (3)
    P. Blanchon (1)
  • 关键词:Extension rate ; Calcification rate ; Proxy environmental records ; Sr/Ca
  • 刊名:Coral Reefs
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:32
  • 期:3
  • 页码:769-777
  • 全文大小:1416KB
  • 参考文献:1. Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91-08 CrossRef
    2. Barnes DJ, Lough JM (1996) Coral skeletons: storage and recovery of environmental information. Global Change Biol 2:569-82 CrossRef
    3. Barnes DJ, Taylor RB, Lough JM (1995) On the inclusion of trace materials into massive coral skeletons. Part II: distortions in skeletal records of annual climate cycles due to growth processes. J Exp Mar Biol Ecol 194:251-75 CrossRef
    4. Cabral-Tena RA, Reyes-Bonilla H, Lluch-Cota S, Paz-García DA, Calderón-Aguilera LE, Norzagaray-López O, Balar EF (2013) Different calcification rates in males and females of the coral / Porites panamensis in the Gulf of California. Mar Ecol Prog Ser 476:1- CrossRef
    5. Cairns SD (1982) Stony corals (Cnidaria: Hydrozoa, Scleractinia) of Carrie Bow Cay, Belize. Smith Contr Mar Sci 12:271-02
    6. Carricart-Ganivet JP (2007) Annual density banding in massive coral skeletons: result of growth strategies to inhabit reefs with high microborers-activity? Mar Biol 153:1- CrossRef
    7. Carricart-Ganivet JP, Barnes DJ (2007) Densitometry from digitized images of X-radiographs: Methodology for measurement of coral skeletal density. J Exp Mar Biol Ecol 344:67-2 CrossRef
    8. Castillo KD, Ries JB, Weiss JM (2011) Declining coral skeletal extension for forereef colonies of / Siderastrea siderea on the Mesoamerican Barrier Reef System. Southern Belize. PLoS ONE 6(2):e14615. doi:10.1371/journal.pone.0014615 CrossRef
    9. Clausen CD, Roth AA (1975) Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral / Pocillopora damicornis. Mar Biol 33:93-00 CrossRef
    10. Dávalos-Dehullu E, Hernández-Arana H, Carricart-Ganivet JP (2008) On the causes of density banding in skeletons of corals of the genus / Montastraea. J Exp Mar Biol Ecol 365:142-47 CrossRef
    11. Dodge RE, Brass GW (1984) Skeletal extension, density and calcification of the reef coral / Montastrea / annularis: St. Croix. US Virgin Islands. Bull Mar Sci 34:288-07
    12. Dodge RE, García R, Szmant AM, Swart PK, Forrester A, Leder JJ (1992) Skeletal structural basis of density banding in the reef coral / Montastrea annularis. Proc 7th Int Coral Reef Symp 1:186-95
    13. Edmunds PJ (2005) The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef. Oecologia 146:350-64 CrossRef
    14. Gagan MK, Dunbar GB, Suzukiet A (2012) The effect of skeletal mass accumulation in / Porites on coral Sr/Ca and d18O paleothermometry. Paleoceanogr 27: PA1203. doi:10.1029/2011PA002215
    15. Glynn PW, Gassman NJ, Eakin CM, Cortes J, Smith DB, Guzman HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador) I. Pocilloporidae. Mar Biol 109:355-68 CrossRef
    16. Glynn PW, Colley SB, Eakin CM, Smith DB, Corte′s J, Gassman NJ, Guzmán HM, Del Rosario JB, Feingold JS (1994) Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, and the Galápagos Islands (Ecuador). II. Poritidae. Mar Biol 118:191-08
    17. Guzmán HM, Jarvis KE (1996) Vanadium century record from Caribbean reef corals: A tracer of oil pollution in Panama. Ambio 25:523-26
    18. Guzmán HM, Tudhope AW (1998) Seasonal variation in skeletal extension rate and stable isotopic (13C/12C and 18O/16O) composition in response to several environmental variables in the Caribbean reef coral / Siderastrea siderea. Mar Ecol Prog Ser 166:109-18 CrossRef
    19. Hall VR, Hughes TP (1996) Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77:950-63 CrossRef
    20. Helmle KP, Dodge RE, Ketcham RA (2000) Skeletal architecture and density banding in / Diploria strigosa by X-ray computed tomography. Proc 9th Int Coral Reef Symp 1: 365-71
    21. Hudson JH, Shinn EA, Halley RB, Lidz B (1976) Sclerochronology: A tool for interpreting past environments. Geology 4:361-64 CrossRef
    22. Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270-72 CrossRef
    23. Leuzinger S, Anthony KRN, Willis BL (2003) Reproductive energy investment in corals: scaling with module size. Oecologia 136:524-31 CrossRef
    24. Lough JM (2010) Climate records from corals. WIREs Clim Change 1:318-31 CrossRef
    25. Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23:218-24
    26. Rodríguez-Martínez RE, Ruíz-Rentería F, van Tussenbroek B, Barba-Santos G, Escalante-Mancera E, Jordán-Garza G, Jordán-Dahlgren E (2010) Environmental state and tendencies of the Puerto Morelos CARICOMP site, Mexico. Rev Biol Trop 58:23-3
    27. Rosenthal Y, Field MP, Sherrell RM (1999) Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal Chem 71:3248-253 CrossRef
    28. Saenger C, Cohen LA, Oppo DW, Halley RB, Carilli JE (2009) Surface-temperature trends and variability in the low-latitude North Atlantic since 1552. Nat Geosci 2:492-95 CrossRef
    29. Schrag DP (1999) Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanogr 14:97-02 CrossRef
    30. Shen CC, Lee T, Chen CY, Wang CH, Dai CF, Li LA (1996) The calibration of / D[Sr/Ca] versus sea surface temperature relationship for / Porites corals. Geochim Cosmochim Acta 60:3849-858 CrossRef
    31. Szmant AM (1986) Reproductive ecology of Caribbean reef corals. Coral Reefs 5:43-4 CrossRef
    32. Taylor RB, Barnes DJ, Lough JM (1993) Simple models of density band formation in massive corals. J Exp Mar Biol Ecol 167:109-25 CrossRef
    33. Vago R, Dubinsky Z, Genin A, Ben-Zion M, Kizner Z (1997) Growth rates of three symbiotic corals in the Red Sea. Limnol Oceanogr 42:1814-819 CrossRef
    34. Vásquez-Bedoya LF, Cohen AL, Oppo DW, Blanchon P (2012) Corals record persistent multidecadal SST variability in the Atlantic Warm Pool since 1775 AD. Paleooceanography 27: PA3231, doi:10.1029/2012PA002313
    35. Veron JEN (2000) Corals of the world, vol. 2. Australian Institute of Marine Science & CRR Qld Pty Ltd, Australia
    36. Wórum FP, Carricart-Ganivet JP, Benson L, Golicher D (2007) Simulation and observations of annual density banding in skeletons of / Montastraea (Cnidaria : Scleractinia) growing under thermal stress associated with ocean warming. Limnol Oceanogr 52:2317-323 CrossRef
  • 作者单位:J. P. Carricart-Ganivet (1)
    L. F. Vásquez-Bedoya (1) (2)
    N. Cabanillas-Terán (3)
    P. Blanchon (1)

    1. Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apdo. Postal 1152, 77500, Cancún, Q. Roo, Mexico
    2. Grupo de Investigación en Gestión y Modelación Ambiental, GAIA–SIU, Universidad de Antioquia, Cl. 62 No. 52-59, Medellín, Antioquia, Colombia
    3. El Colegio de la Frontera Sur, Unidad Chetumal, Av. Centenario km 5.5. Apdo. Postal 424, 77000, Chetumal, Q. Roo, Mexico
文摘
Density banding in skeletons of reef-building corals is a valuable source of proxy environmental data. However, skeletal growth strategy has a significant impact on the apparent timing of density-band formation. Some corals employ a strategy where the tissue occupies previously formed skeleton during as the new band forms, which leads to differences between the actual and apparent band timing. To investigate this effect, we collected cores from female and male colonies of Siderastrea siderea and report tissue thicknesses and density-related growth parameters over a 17-yr interval. Correlating these results with monthly sea surface temperature (SST) shows that maximum skeletal density in the female coincides with low winter SSTs, whereas in the male, it coincides with high summer SSTs. Furthermore, maximum skeletal densities in the female coincide with peak Sr/Ca values, whereas in the male, they coincide with low Sr/Ca values. Both results indicate a 6-month difference in the apparent timing of density-band formation between genders. Examination of skeletal extension rates also show that the male has thicker tissue and extends faster, whereas the female has thinner tissue and a denser skeleton—but both calcify at the same rate. The correlation between extension and calcification, combined with the fact that density banding arises from thickening of the skeleton throughout the depth reached by the tissue layer, implies that S. siderea has the same growth strategy as massive Porites, investing its calcification resources into linear extension. In addition, differences in tissue thicknesses suggest that females offset the greater energy requirements of gamete production by generating less tissue, resulting in differences in the apparent timing of density-band formation. Such gender-related offsets may be common in other corals and require that environmental reconstructions be made from sexed colonies and that, in fossil corals where sex cannot be determined, reconstructions must be duplicated in different colonies.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.